Gotowa bibliografia na temat „Microbe-mineral Interaction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Microbe-mineral Interaction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Microbe-mineral Interaction"
OLSSON-FRANCIS, K., R. VAN HOUDT, M. MERGEAY, N. LEYS i C. S. COCKELL. "Microarray analysis of a microbe-mineral interaction". Geobiology 8, nr 5 (15.08.2010): 446–56. http://dx.doi.org/10.1111/j.1472-4669.2010.00253.x.
Pełny tekst źródłaCuadros, Javier. "Clay minerals interaction with microorganisms: a review". Clay Minerals 52, nr 2 (czerwiec 2017): 235–61. http://dx.doi.org/10.1180/claymin.2017.052.2.05.
Pełny tekst źródłaXia, Jin Lan, Hong Chang Liu, Zhen Yuan Nie, Hong Rui Zhu, Yun Yang, Lei Wang, Jian Jun Song i in. "Characterization of Microbe-Mineral Interfacial Interaction Based on Synchrotron Radiation Techniques". Advanced Materials Research 1130 (listopad 2015): 123–26. http://dx.doi.org/10.4028/www.scientific.net/amr.1130.123.
Pełny tekst źródłaMhonde, Ngoni, Mariette Smart, Kirsten Corin i Nora Schreithofer. "Investigating the Electrochemical Interaction of a Thiol Collector with Chalcopyrite and Galena in the Presence of a Mixed Microbial Community". Minerals 10, nr 6 (19.06.2020): 553. http://dx.doi.org/10.3390/min10060553.
Pełny tekst źródłaBreier, J. A., S. N. White i C. R. German. "Mineral–microbe interactions in deep-sea hydrothermal systems: a challenge for Raman spectroscopy". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, nr 1922 (13.07.2010): 3067–86. http://dx.doi.org/10.1098/rsta.2010.0024.
Pełny tekst źródłaHochella, M. F. "Sustaining Earth: Thoughts on the present and future roles of mineralogy in environmental science". Mineralogical Magazine 66, nr 5 (październik 2002): 627–52. http://dx.doi.org/10.1180/0026461026650053.
Pełny tekst źródłaYang, Kiho, Hanbeom Park i Jinwook Kim. "Application of Electron Energy Loss Spectroscopy - Spectrum Imaging (EELS-SI) for Microbe-mineral Interaction". Journal of the mineralogical society of korea 32, nr 1 (31.03.2019): 63–69. http://dx.doi.org/10.9727/jmsk.2019.32.1.63.
Pełny tekst źródłaSanyal, Santonu Kumar, i Jeremiah Shuster. "Gold particle geomicrobiology: Using viable bacteria as a model for understanding microbe–mineral interactions". Mineralogical Magazine 85, nr 1 (luty 2021): 117–24. http://dx.doi.org/10.1180/mgm.2021.19.
Pełny tekst źródłaXia, Jinlan, Hongchang Liu, Zhenyuan Nie, Xiaolu Fan, Duorui Zhang, Xingfu Zheng, Lizhu Liu, Xuan Pan i Yuhang Zhou. "Taking insights into phenomics of microbe-mineral interaction in bioleaching and acid mine drainage: Concepts and methodology". Science of The Total Environment 729 (sierpień 2020): 139005. http://dx.doi.org/10.1016/j.scitotenv.2020.139005.
Pełny tekst źródłaSusilawati, Dr Rita. "Bioremediation Experiment Using Hydrocarbon Degrading Bacteria". Jurnal Geologi dan Sumberdaya Mineral 20, nr 1 (4.02.2019): 1. http://dx.doi.org/10.33332/jgsm.2019.v20.1.1-7.
Pełny tekst źródłaRozprawy doktorskie na temat "Microbe-mineral Interaction"
Ciobotă, Valerian [Verfasser], Jürgen [Akademischer Betreuer] Popp i Reinhard [Akademischer Betreuer] Gaupp. "Towards the investigation of microbe-mineral interaction by means of Raman spectroscopy / Valerian Ciobota. Gutachter: Jürgen Popp ; Reinhard Gaupp". Jena : Thüringer Universitäts- und Landesbibliothek Jena, 2013. http://d-nb.info/103366944X/34.
Pełny tekst źródłaLower, Steven K. "Mineral-Microbe Interactions Probed in Force, Energy, and Distance Nanospace". Diss., Virginia Tech, 2001. http://hdl.handle.net/10919/26319.
Pełny tekst źródłaPh. D.
Ahmed, Engy. "Microbe-mineral interactions in soil : Investigation of biogenic chelators, microenvironments and weathering processes". Doctoral thesis, Stockholms universitet, Institutionen för geologiska vetenskaper, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-115250.
Pełny tekst źródłaAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: In press. Paper 3: In press.
Potysz, Anna. "Copper metallurgical slags : mineralogy, bio/weathering processes and metal bioleaching". Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1201/document.
Pełny tekst źródłaProblem statement: Copper pyrometallurgical slags are inevitable waste by-products of Cu smelting operations. These waste are considered to be important due to their production volume and high residual metal content that are inefficiently recovered during industrial process. Due to the lack of sustainable practices in the past, tremendous volumes of Cu-slags have been disposed in many industrial districts, regardless of the weathering and associated environmental risk. Consequently, there are many areas where slags have been proven to be a source of metallic pollution for the surrounding environment. At the present time, the outstanding contradiction between the sustainable development and environmental pollution encourages to undertake the action regarding this aspect. For this reason, slags are currently being used as supplementary materials for civil engineering purposes (e.g. cement and concrete additives, road bed filling materials, hydraulic construction materials) rather than disposed. Additionally, modern-day management strategies require slags to be thoroughly evaluated with respect to their environmental stability prior undertaking any reuse action. Main objectives were to evaluate environmental stability of Cu-metallurgical slags resulting from different periods of industrial activities and different smelting technologies. Those included: historical crystalline slag (HS) as well as modern: shaft furnace slag (SFS), granulated slag (GS) and lead slag (LS). Different approaches undertaken in this PhD work considered: i) chemical and mineral phase compositions of slags, ii) leaching susceptibility of slags under exposure to different pH-stat conditions, iii) slags weathering under exposure to organic acids commonly found in soil environment, iv) bacterially (Pseudomonas aeruginosa) mediated weathering of slags and v) future application of studied slags for metal recovery by implementing the bioleaching method. Crucial results: The results of the pH-dependent leaching tests showed a higher metal release in strong acidic conditions (pH 2 and 4), whereas leachability at alkaline conditions (pH 10.5) revealed a lower importance for all the slags analyzed. The study considering soil weathering scenario demonstrated that Cu-slags are susceptible to dissolution in the presence of artificial root exudates (ARE), humic (HA) and fulvic acids (FA), whereby ARE were found to have stronger contribution than HA and FA. According to data collected, the different behavior of individual slags is strictly related to their characteristics (chemical and phase composition) reflecting various susceptibilities to dissolution under the investigated conditions. The study considering bio-weathering scenario revealed that Pseudomonas aeruginosa considerably enhances the release of major (Si and Fe) and metallic (Cu, Zn, Pb) elements compared to the effects of abiotic factors, regardless of the slags chemistry and structure. Furthermore, a high gain (up to 90%) of metals (Cu, Zn, Fe) could be credited to bioleaching with Acidithiobacillus thiooxidans under laboratory conditions. General conclusions: The environmental stability of slags depends on both, their bulk chemistry and mineralogy. However, mineral phases harbouring the metals are the key players in metal leachability intensity. For, this reason consideration of individual slags behaviour is important for preventing environmental contamination and should be regarded as priority branch of sustainable slag management. Optimization of operating parameters for bioleaching following development of industrial scale technology is an incentive scheme for future management of Cu-metallurgical slags
Johnston, Michael David. "The Dominance of the Archaea in the Terrestrial Subsurface". University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1384856797.
Pełny tekst źródłaPatra, Paratha. "Microbially-induced Mineral Flocculation and Flotation with Proteins and Polysaccharides Isolated from Paenibacillus". Thesis, 2006. https://etd.iisc.ac.in/handle/2005/4989.
Pełny tekst źródłaKyle, Jennifer E. "Mineral-microbe interactions and biomineralization of siliceous sinters and underlying rock from Jenn's Pools in the Uzon Caldera, Kamchatka, Russia". 2005. http://purl.galileo.usg.edu/uga%5Fetd/kyle%5Fjennifer%5Fe%5F200508%5Fms.
Pełny tekst źródłaVasanthakumar, B. "Studies On The Isolation And Characterisation Of Bioreagents For The Flotation Of Sphalerite From Galena-Sphalerite System". Thesis, 2011. https://etd.iisc.ac.in/handle/2005/2427.
Pełny tekst źródłaVasanthakumar, B. "Studies On The Isolation And Characterisation Of Bioreagents For The Flotation Of Sphalerite From Galena-Sphalerite System". Thesis, 2011. http://etd.iisc.ernet.in/handle/2005/2427.
Pełny tekst źródłaKsiążki na temat "Microbe-mineral Interaction"
Huang, Qiaoyun, Pan Ming Huang i Antonio Violante, red. Soil Mineral Microbe-Organic Interactions. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77686-4.
Pełny tekst źródłaMaurice, Patricia A., Lesley A. Warren, Derek C. Bain i Paul A. Schroeder, red. Methods for Study of Microbe – Mineral Interactions. Chantilly, VA: Clay Minerals Society, 2006. http://dx.doi.org/10.1346/cms-wls-14.
Pełny tekst źródłaQiaoyun, Huang, Huang P. M, Violante A i International Symposium Mineral-Organic-Microorganism (4th : 2004 : Wuhan, China), red. Soil mineral-microbe-organic interactions: Theories and applications. Berlin: Springer, 2008.
Znajdź pełny tekst źródłaMuehe, Eva Marie. Plant-microbe-mineral interactions in metal(loid)-contaminated environments. [S.l: s.n.], 2013.
Znajdź pełny tekst źródłaViolante, Antonio, Qiaoyun Huang i Pan Ming Huang. Soil Mineral -- Microbe-Organic Interactions: Theories and Applications. Springer, 2010.
Znajdź pełny tekst źródłaSoil Mineral -- Microbe-Organic Interactions: Theories and Applications. Springer, 2008.
Znajdź pełny tekst źródłaRamteke, Pramod, Kalyani Dhusia i Kalpana Raja. Fungal Siderophores: From Mineral―Microbe Interactions to Anti-Pathogenicity. Springer International Publishing AG, 2021.
Znajdź pełny tekst źródłaRamteke, Pramod, Kalyani Dhusia i Kalpana Raja. Fungal Siderophores: From Mineral―Microbe Interactions to Anti-Pathogenicity. Springer International Publishing AG, 2022.
Znajdź pełny tekst źródłaVaughan, David. 5. Minerals and the living world. Oxford University Press, 2014. http://dx.doi.org/10.1093/actrade/9780199682843.003.0005.
Pełny tekst źródłaCzęści książek na temat "Microbe-mineral Interaction"
Couradeau, Estelle, Karim Benzerara, David Moreira i Purificación López-García. "Protocols for the Study of Microbe–Mineral Interactions in Modern Microbialites". W Springer Protocols Handbooks, 319–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/8623_2015_156.
Pełny tekst źródłaMishra, Srabani, Sandeep Panda, Nilotpala Pradhan, Surendra Kumar Biswal, Lala Behari Sukla i Barada Kanta Mishra. "Microbe–Mineral Interactions: Exploring Avenues Towards Development of a Sustainable Microbial Technology for Coal Beneficiation". W Soil Biology, 33–52. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19018-1_2.
Pełny tekst źródłaLavoie, Kathleen, Diana Northup i Hazel Barton. "Microbe–Mineral Interactions". W Geomicrobiology, 1–45. Science Publishers, 2010. http://dx.doi.org/10.1201/b10193-2.
Pełny tekst źródła"Microbe–Mineral Interactions: Cave Geomicrobiology". W Geomicrobiology, 13–58. CRC Press, 2016. http://dx.doi.org/10.1201/b10193-3.
Pełny tekst źródłaMiller, A., A. Dionisio, M. Lopes, M. Afonso i H. Chamine. "Microbe-mineral interactions at a Portuguese geo-archaeological site". W The Conservation of Subterranean Cultural Heritage, 103–11. CRC Press, 2014. http://dx.doi.org/10.1201/b17570-15.
Pełny tekst źródłaMonteiro, Gabriel, Glauco Nogueira, Cândido Neto, Vitor Nascimento i Joze Freitas. "Promotion of Nitrogen Assimilation by Plant Growth-Promoting Rhizobacteria". W Nitrogen in Agriculture - Physiological, Agricultural and Ecological Aspects [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96634.
Pełny tekst źródłaBerthelin, J., C. Leyval i C. Mustin. "Illustrations of the occurrence and diversity of mineral-microbe interactions involved in weathering of minerals". W Environmental MineralogyMicrobial Interactions, Anthropogenic Influences, Contaminated Land and Waste Management. Mineralogical Society of Great Britain and Ireland, 2000. http://dx.doi.org/10.1180/mss.9.2.
Pełny tekst źródłaStreszczenia konferencji na temat "Microbe-mineral Interaction"
Jones, Daniel S., Diana E. Northup i Penelope J. Boston. "Microbe-Mineral Interactions in Caves". W 2022 New Mexico Geological Society Annual Spring Meeting & Ft. Stanton Cave Conference. Socorro, NM: New Mexico Geological Society, 2022. http://dx.doi.org/10.56577/sm-2022.2846.
Pełny tekst źródłaTaylor, Ellen, Bruce W. Boles, Peter A. Lee, Richard Campen, M. Darby Dyar, Elizabeth C. Sklute i Jill A. Mikucki. "MICROBE-MINERAL INTERACTIONS IN A SUB-ZERO BRINE AQUIFER BENEATH TAYLOR GLACIER, ANTARCTICA". W 67th Annual Southeastern GSA Section Meeting - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018se-312370.
Pełny tekst źródłaRaporty organizacyjne na temat "Microbe-mineral Interaction"
Lower, Steven, K. Nanobiogeochemistry of Microbe/Mineral Interactions: A Force Microscopy and Bioinformatics Approach. Office of Scientific and Technical Information (OSTI), październik 2006. http://dx.doi.org/10.2172/893095.
Pełny tekst źródłaNtarlagiannis, Dimitrios, Stephen Moysey i Delphine Dean. Quantifying microbe-mineral interactions leading to remotely detectable induced polarization signals. Office of Scientific and Technical Information (OSTI), listopad 2013. http://dx.doi.org/10.2172/1105157.
Pełny tekst źródłaLower, Steven, K. Nanobiogeochemistry of Microbe/Mineral Interactions: A Force Microscopy and Bioinformatics Approach. Office of Scientific and Technical Information (OSTI), listopad 2005. http://dx.doi.org/10.2172/860984.
Pełny tekst źródłaMoysey, Stephen, Delphine Dean i Ntarlagiannis Dimitrios. Quantifying Microbe-Mineral Interactions Leading to Remotely Detectable Induced Polarization Signals (Final Project Report). Office of Scientific and Technical Information (OSTI), listopad 2013. http://dx.doi.org/10.2172/1105108.
Pełny tekst źródła