Gotowa bibliografia na temat „Micro and nano electronics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Micro and nano electronics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Micro and nano electronics"
Muldoon, Kirsty, Yanhua Song, Zeeshan Ahmad, Xing Chen i Ming-Wei Chang. "High Precision 3D Printing for Micro to Nano Scale Biomedical and Electronic Devices". Micromachines 13, nr 4 (18.04.2022): 642. http://dx.doi.org/10.3390/mi13040642.
Pełny tekst źródłaVerner, V. "Electronics: from “micro” to “nano” and further levels…". Nanoindustry Russia, nr 4 (2015): 6–9. http://dx.doi.org/10.22184/1993-8578.2015.58.4.6.9.
Pełny tekst źródłaGogsadze, R., A. Prangishvili, P. Kervalishvili, R. Chiqovani i V. Gogichaishvili. "A boundary problem of micro- and nano-electronics". Nanotechnology Perceptions 12, nr 3 (30.10.2016): 173–83. http://dx.doi.org/10.4024/n15go15a.ntp.12.03.
Pełny tekst źródłaWang, Yu, Jiahui Guo, Dongyu Xu, Zhuxiao Gu i Yuanjin Zhao. "Micro-/nano-structured flexible electronics for biomedical applications". Biomedical Technology 2 (czerwiec 2023): 1–14. http://dx.doi.org/10.1016/j.bmt.2022.11.013.
Pełny tekst źródłaKazior, Thomas E. "Beyond CMOS: heterogeneous integration of III–V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, nr 2012 (28.03.2014): 20130105. http://dx.doi.org/10.1098/rsta.2013.0105.
Pełny tekst źródłaKumar, Rakesh. "A high temperature nano/micro vapor phase conformal coating for electronics applications". Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2015, HiTEN (1.01.2015): 000083–90. http://dx.doi.org/10.4071/hiten-session3a-paper3a_1.
Pełny tekst źródłaDeng, Xiangying, i Yukio Kawano. "Terahertz Plasmonics and Nano-Carbon Electronics for Nano-Micro Sensing and Imaging". International Journal of Automation Technology 12, nr 1 (5.01.2018): 87–96. http://dx.doi.org/10.20965/ijat.2018.p0087.
Pełny tekst źródłaLi, Nannan, Shucai Pang, Fei Yan, Lei Chen, Dazhi Jin, Wei Xiang, De Zhang i Baoqing Zeng. "Window-assisted nanosphere lithography for vacuum micro-nano-electronics". AIP Advances 5, nr 4 (kwiecień 2015): 047101. http://dx.doi.org/10.1063/1.4916973.
Pełny tekst źródłaHuang, Xinlong, Youchao Qi, Tianzhao Bu, Xinrui Li, Guoxu Liu, Jianhua Zeng, Beibei Fan i Chi Zhang. "Overview of Advanced Micro-Nano Manufacturing Technologies for Triboelectric Nanogenerators". Nanoenergy Advances 2, nr 4 (25.11.2022): 316–43. http://dx.doi.org/10.3390/nanoenergyadv2040017.
Pełny tekst źródłaZeng, Qi, Saisai Zhao, Hangao Yang, Yi Zhang i Tianzhun Wu. "Micro/Nano Technologies for High-Density Retinal Implant". Micromachines 10, nr 6 (22.06.2019): 419. http://dx.doi.org/10.3390/mi10060419.
Pełny tekst źródłaRozprawy doktorskie na temat "Micro and nano electronics"
Sandison, Mairi Elizabeth. "Micro- and nano-electrode arrays for electroanalytical sensing". Thesis, Connect to e-thesis, 2004. http://theses.gla.ac.uk/1025/.
Pełny tekst źródłaIncludes bibliographical references (p. 183-203). Print version also available. Mode of access : World Wide Web. System requirements : Adobe Acrobat reader required to view PDF document.
Chichenkov, Aleksandr. "Electrokinetic manipulation of micro to nano-sized objects for microfluidic application". Thesis, University of Liverpool, 2013. http://livrepository.liverpool.ac.uk/15933/.
Pełny tekst źródłaHamedi, Mahiar. "Organic electronics on micro and nano fibers : from e-textiles to biomolecular nanoelectronics". Doctoral thesis, Linköpings universitet, Biomolekylär och Organisk Elektronik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-17661.
Pełny tekst źródłaCaccamo, Sebastiano. "Innovative techniques for conformal doping of semiconductors for applications in micro- and nano-electronics". Doctoral thesis, Università di Catania, 2018. http://hdl.handle.net/10761/4171.
Pełny tekst źródłaMahmood, Tamara. "Micro and nano analysis of a novel polymeric bioresorbable scaffold and its drug release". Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/51775/.
Pełny tekst źródłaYao, Peng. "Developing three-dimensional lithography and chemical lithography for applications on micro/nano photonics and electronics". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 206 p, 2007. http://proquest.umi.com/pqdweb?did=1397913021&sid=11&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Pełny tekst źródłaBricchi, Erica. "Femtosecond laser micro-machining and consequent self-assembled nano-structures in transparent materials". Thesis, University of Southampton, 2005. https://eprints.soton.ac.uk/30234/.
Pełny tekst źródłaWilliams, Benjamin Heathcote. "Nano- and micro-scale techniques for electrical transport measurements". Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:09c73d9f-b68d-4f06-9ffe-cbb29d200809.
Pełny tekst źródłaGalán, Cascales Teresa. "Conducting polymers for micro and nano electrodes. Application to biomolecule sensing and release". Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/297432.
Pełny tekst źródłaAunque los polímeros conductores se presentan como una alternativa viable a los materiales convencionalmente usados en aplicaciones biomédicas, las técnicas de fabricación adaptadas a ellos y el aprovechamiento de sus propiedades están lejos de ser completos. Existen importantes limitaciones en la fabricación de micro y nano estructuras basadas en polímeros conductores. Debido a la agresividad de las técnicas tradicionalmente usadas en microelectrónica, se hace necesaria la búsqueda de nuevas estrategias de fabricación adaptadas a polímeros conductores, así como de nuevos procesos que puedan mejorar el rendimiento de los dispositivos diseñados. En esta tesis titulada “Conducting polymers micro and nano electrodes. Application to biomolecule sensing and release”, se han investigado nuevas técnicas de fabricación y de funcionalización de polímeros conductores, poniendo un especial interés en su aplicación biomédica. Una nueva técnica de fabricación de microestructuras de polipirrol por método biocatalítico sobre superficies aislantes ha sido desarrollada con resoluciones comparables a las de la litografía óptica. Dicha técnica es compatible con la incorporación de biomoléculas durante el proceso de síntesis, lo que garantiza su utilización en entornos biológicos. Esto fue demostrado mediante la incorporación de biotina durante el proceso de polimerización y su posterior liberación, mediante estimulo eléctrico. También se ha desarrollado un nuevo sensor de ADN sin marcaje basado en electrodos de azida-PEDOT, para la detección de secuencias basadas en la “Hepatitis C”. Estos electrodos, permiten la directa y covalente funcionalización con secuencias de ADN, modificadas con grupos acetileno, por medio de la química “Click”. La hibridación fue detectada mediante la evaluación de la electroactividad del polímero tras el suceso de reconocimiento. Esta novedosa modalidad de sensores demostró ser selectiva y sensible, siendo capaz de detectar secuencias complementarias en el rango nM, sin necesidad de marcajes, ni complejas técnicas de microfabricación. Finalmente, se estudiaron dos técnicas de fabricación de nanohilos de polímero conductor: nanolitografía de dip-pen y electropolimerización sobre superficies con plantillas. Estos estudios proveen al incompleto campo de la fabricación de nanoestructuras de polímeros conductores de resultados adicionales, que amplían el campo de aplicación de dichos materiales.
Sorel, Julien. "Tomographie électronique analytique : Automatisation du traitement de données et application aux nano-dispositifs 3D en micro-électronique". Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI078.
Pełny tekst źródłaThe aim of this thesis is to automate the process of hyperspectral analysis for analytical electron tomography applied to nanodevices. The work presented here is focused on datasets obtained by energy-dispersive X-ray spectroscopy in a scanning transmission electron microscope (STEM-EDX). STEM-EDX tomography has benefited greatly from recent developments in electron sources such as the ‘X’-FEG (Field Emission Gun), and multiple X-ray detector systems such as the Super-X, incorporating four SSD (Silicon Drift Detectors) detectors. The technique remains however very time-consuming, and low X-ray count rates are necessary to minimize the total acquisition time and avoid beam damage during the experiment. In addition, tomographic stacks of STEM-EDX datacubes, acquired at different tilt angles, are too large to be analyzed by commercial software packages in an optimal way. In order to automate this process, we developed a code based on Hyperspy, a Python library for multidimensional data analysis. Multivariate statistical analysis techniques were employed to optimize and automate the denoising, the energy calibration and the separation of overlapping X-ray lines, with the aim to achieve quantitative, chemically sensitive volumes. Moreover, a compressed sensing based algorithm was employed to achieve high fidelity reconstructions with undersampled tomographic datasets. The code developed during this thesis was used for the 3D chemical analysis of four microelectronic nanostructures: FinFET, HEMT and GAA transistors, and a GeTe thin film for memory device applications. The samples were prepared in a needle shape using a focused ion beam, and the data acquisitions were performed using a Titan Themis microscope equipped with a super-X EDX detector system. It is shown that the code yields 3D morphological and chemical information with high accuracy and fidelity. Ways to improve the current methodology are discussed, with future efforts aiming at developing a package dedicated to analytical electron tomography
Książki na temat "Micro and nano electronics"
International, Workshop on Microelectronics (6th 2007 Islamabad Pakistan), i Workshop on Microelectronics (6th 2007 Islāmābād Pakistan) International. Microelectronics: Micro and nano-electronics and photonics. New Delhi: Centre for Science & Technology of the Non-aligned and Other Developing Countries, 2009.
Znajdź pełny tekst źródłaInternational, Workshop on Microelectronics (6th 2007 Islamabad Pakistan). Microelectronics: Micro and nano-electronics and photonics. New Delhi: Centre for Science & Technology of the Non-Aligned and Other Developing Countries, 2009.
Znajdź pełny tekst źródłaInternational, Workshop on Microelectronics (6th 2007 Islāmābād Pakistan). Microelectronics: Micro and nano-electronics and photonics. New Delhi: Centre for Science & Technology of the Non-Aligned and Other Developing Countries, 2009.
Znajdź pełny tekst źródłaInternational Workshop on Microelectronics (6th 2007 Islāmābād, Pakistan). Microelectronics: Micro and nano-electronics and photonics. Redaktorzy Lal Krishan 1941-, Centre for Science and Technology of the Non-Aligned and Other Developing Countries. i Institute of Information Technology (Islamabad, Pakistan). New Delhi: Centre for Science & Technology of the Non-Aligned and Other Developing Countries, 2009.
Znajdź pełny tekst źródłaAkhmetovich, Valiev Kamilʹ, Orlikovskiĭ A. A, Society of Photo-optical Instrumentation Engineers., Society of Photo-optical Instrumentation Engineers. Russian Chapter., Fiziko-tekhnologicheskiĭ institut (Rossiĭskai͡a︡ akademii͡a︡ nauk) i Russia (Federation). Ministerstvo promyshlennosti, nauki i tekhnologiĭ., red. Micro- and nano-electronics 2003: 6-10 October 2003, Zvenigorod, Russia. Bellingham, Wash., USA: SPIE, 2004.
Znajdź pełny tekst źródłaJalili, Nader. Piezoelectric-based vibration-control: From macro to micro/nano scale systems. New York: Springer, 2010.
Znajdź pełny tekst źródłaInternational Conference on Micro- and Nano-Electronics (2009 Zvenigorod, Russia). International Conference on Micro- and Nano-Electronics, 2009: 5-9 October 2009, Zvenigorod, Russian Federation. Redaktorzy Orlikovskiĭ, A. A. (Aleksandr Aleksandrovich), Valiev Kamilʹ Akhmetovich, Fiziko-tekhnologicheskiĭ institut (Rossiĭskai︠a︡ akademii︠a︡ nauk), Rossiĭskai︠a︡ akademii︠a︡ nauk i SPIE (Society). Bellingham, Wash: SPIE, 2010.
Znajdź pełny tekst źródłaIEEE International Conference on Nano/Micro Engineered and Molecular Systems (2nd 2007 Bangkok, Thailand). 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems: Bangkok, Thailand, 16-19 January 2007. Piscataway, NJ: IEEE, 2007.
Znajdź pełny tekst źródłaIEEE International Conference on Nano/Micro Engineered and Molecular Systems (3rd 2008 Sanya, China). 2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Sanya, China 6-9 January 2008. Piscataway, N.J: IEEE, 2008.
Znajdź pełny tekst źródłaIEEE International Conference on Nano/Micro Engineered and Molecular Systems (1st 2006 Zhuhai, China). 2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems: Zhuhai, China, 19-21 January 2006. Piecataway, NJ: IEEE, 2006.
Znajdź pełny tekst źródłaCzęści książek na temat "Micro and nano electronics"
Delmonte, John. "Micro and Nano Electronic Applications". W Metal/Polymer Composites, 210–38. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-1446-2_9.
Pełny tekst źródłaBožanić, Mladen, i Saurabh Sinha. "Device Scaling: Going from “Micro-” to “Nano-” Electronics". W Lecture Notes in Electrical Engineering, 1–40. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44398-6_1.
Pełny tekst źródłaFahrner, Wolfgang R., Giovanni Landi, Raffaele Di Giacomo i Heinz C. Neitzert. "Multiwalled Carbon Nanotube Network-Based Sensorsand Electronic Devices". W The Nano-Micro Interface, 225–42. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527679195.ch12.
Pełny tekst źródłaRadosavljević, Dušan, Lazar Jeftić, L. V. Muralikrishna Reddy, K. Gopalakrishnan i S. Mohankumar. "Era of Small Satellites: Pico, Nano and Micro-satellites (PNM Sat)—an Over View of Frugal Way to Access Low Earth Orbit". W Micro-Electronics and Telecommunication Engineering, 367–88. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4687-1_35.
Pełny tekst źródłaKazemifard, Nafiseh, Behzad Rezaei i Zeinab Saberi. "Conventional Technologies and Opto-electronic Devices for Detection of Food Biomarkers". W Biosensing and Micro-Nano Devices, 169–96. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8333-6_7.
Pełny tekst źródłaShacham-Diamand, Y., R. Popovtzer i Y. Rishpon. "Nano-Bio Electrochemical Interfacing–Linking Cell Biology and Micro-Electronics". W Nanostructure Science and Technology, 169–83. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-1424-8_12.
Pełny tekst źródłaCobian, M., E. Machado, M. Kaczmarski, B. Braida, P. Ordejon, D. Garg, J. Norman i H. Cheng. "Simulation of the Growth of Copper Films for Micro and Nano-Electronics". W Advances in Science and Technology, 167–73. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908158-07-9.167.
Pełny tekst źródłaBalberg, I. "The Electronic Properties of Nano, Micro and Amorphous Silicon". W Properties and Applications of Amorphous Materials, 251–60. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0914-0_14.
Pełny tekst źródłaMarmiroli, Andrea, Gianpietro Carnevale i Andrea Ghetti. "Technology and Device Modeling in Micro and Nano-electronics: Current and Future Challenges". W Scientific Computing in Electrical Engineering, 41–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71980-9_3.
Pełny tekst źródłaPatnaik, Rakesh K., Devi Prasad Pattnaik i Chayanika Bose. "Performance of All-Back-Contact Nanowire Solar Cell with a Nano-Crystalline Silicon Layer". W Proceedings of 2nd International Conference on Micro-Electronics, Electromagnetics and Telecommunications, 1–11. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4280-5_1.
Pełny tekst źródłaStreszczenia konferencji na temat "Micro and nano electronics"
"Micro & nano electronics". W 2015 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW). IEEE, 2015. http://dx.doi.org/10.1109/eiconrusnw.2015.7102301.
Pełny tekst źródła"Micro & nano electronics". W 2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW). IEEE, 2016. http://dx.doi.org/10.1109/eiconrusnw.2016.7448103.
Pełny tekst źródłaZhang, Yijin. "Application of transition-metal dichalcogenides beyond general electronics". W Nano-Micro Conference 2017. London: Nature Research Society, 2017. http://dx.doi.org/10.11605/cp.nmc2017.01026.
Pełny tekst źródłaChu, Ying-Hao. "Van der Waals Oxide Heteroepitaxy for Transparent and Flexible Electronics". W Nano-Micro Conference 2017. London: Nature Research Society, 2017. http://dx.doi.org/10.11605/cp.nmc2017.01039.
Pełny tekst źródłaKhelif, Abdelkrim. "Micro and nano-phononics". W 2016 IEEE International Conference on Semiconductor Electronics (ICSE). IEEE, 2016. http://dx.doi.org/10.1109/smelec.2016.7573573.
Pełny tekst źródłaIwai, H. "Past and Future of Micro-/Nano-electronics". W 2021 IEEE 32nd International Conference on Microelectronics (MIEL). IEEE, 2021. http://dx.doi.org/10.1109/miel52794.2021.9569187.
Pełny tekst źródłaDavis, Timothy J. "Plasmonics: the convergence between optics and electronics". W SPIE Micro+Nano Materials, Devices, and Applications, redaktorzy James Friend i H. Hoe Tan. SPIE, 2013. http://dx.doi.org/10.1117/12.2044696.
Pełny tekst źródłaColla, Laura, Laura Fedele, Simone Mancin, Sergio Bobbo, Davide Ercole i Oronzio Manca. "Nano-PCMs for Electronics Cooling Applications". W ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/mnhmt2016-6613.
Pełny tekst źródłaLandi, Giovanni, Heinz Christoph Neitzert i Andrea Sorrentino. "New biodegradable nano-composites for transient electronics devices". W EMERGING TECHNOLOGIES: MICRO TO NANO (ETMN-2017): Proceedings of the 3rd International Conference on Emerging Technologies: Micro to Nano. Author(s), 2018. http://dx.doi.org/10.1063/1.5047766.
Pełny tekst źródłaUherek, Frantisek, Daniel Donoval i Jozef Chovan. "Extension of micro/nano-electronics technology towards photonics education". W 2009 IEEE International Conference on Microelectronic Systems Education (MSE '09). IEEE, 2009. http://dx.doi.org/10.1109/mse.2009.5270818.
Pełny tekst źródłaRaporty organizacyjne na temat "Micro and nano electronics"
Strouse, Geoffrey F. Assembling Nano-Materials by Bio-Scaffolding: Crystal Engineering in Nano-Electronics. Fort Belvoir, VA: Defense Technical Information Center, marzec 2000. http://dx.doi.org/10.21236/ada393942.
Pełny tekst źródłaLuzinov, Igor, i Konstantin Kornev. Functionalized Nano and Micro Structured Composite Coatings. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2011. http://dx.doi.org/10.21236/ada552528.
Pełny tekst źródłaBashir, Rashid. Micro and Nano-mediated 3D Cardiac Tissue Engineering. Fort Belvoir, VA: Defense Technical Information Center, październik 2010. http://dx.doi.org/10.21236/ada604913.
Pełny tekst źródłaJiang, Hongxing, i Jingyu Lin. Wide Bandgap III-Nitride Micro- and Nano-Photonics. Fort Belvoir, VA: Defense Technical Information Center, maj 2008. http://dx.doi.org/10.21236/ada482416.
Pełny tekst źródłaMeans, Joel L., i Jerrold Anthony Floro. GeSi strained nanostructure self-assembly for nano- and opto-electronics. Office of Scientific and Technical Information (OSTI), lipiec 2001. http://dx.doi.org/10.2172/889001.
Pełny tekst źródłaKim, Philip. Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures. Fort Belvoir, VA: Defense Technical Information Center, marzec 2015. http://dx.doi.org/10.21236/ada616377.
Pełny tekst źródłaWu, Judy Z. Materials Science and Physics at Micro/Nano-Scales. FINAL REPORT. Office of Scientific and Technical Information (OSTI), wrzesień 2009. http://dx.doi.org/10.2172/1097092.
Pełny tekst źródłaPainter, Oskar, Kerry Vahala, Jeff Kimble i Tobias Kippenberg. Micro-and Nano-Optomechanical Devices for Sensors, Oscillators, and Photonics. Fort Belvoir, VA: Defense Technical Information Center, październik 2015. http://dx.doi.org/10.21236/ada622998.
Pełny tekst źródłaVelasquez-Garcia, Luis F. Integrated Vacuum Micro-Electronics for Upper Milimeter Wave Applications. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2011. http://dx.doi.org/10.21236/ada545830.
Pełny tekst źródłaGeorge, Jeffrey, i Suzanne Nowicki. Radiation Effect in Micro-electronics - Issues for lunar surface. Office of Scientific and Technical Information (OSTI), sierpień 2022. http://dx.doi.org/10.2172/1881804.
Pełny tekst źródła