Artykuły w czasopismach na temat „Metric learning paradigm”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Metric learning paradigm”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Brockmeier, Austin J., John S. Choi, Evan G. Kriminger, Joseph T. Francis i Jose C. Principe. "Neural Decoding with Kernel-Based Metric Learning". Neural Computation 26, nr 6 (czerwiec 2014): 1080–107. http://dx.doi.org/10.1162/neco_a_00591.
Pełny tekst źródłaSaha, Soumadeep, Utpal Garain, Arijit Ukil, Arpan Pal i Sundeep Khandelwal. "MedTric : A clinically applicable metric for evaluation of multi-label computational diagnostic systems". PLOS ONE 18, nr 8 (10.08.2023): e0283895. http://dx.doi.org/10.1371/journal.pone.0283895.
Pełny tekst źródłaGong, Xiuwen, Dong Yuan i Wei Bao. "Online Metric Learning for Multi-Label Classification". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 04 (3.04.2020): 4012–19. http://dx.doi.org/10.1609/aaai.v34i04.5818.
Pełny tekst źródłaQiu, Wei. "Based on Semi-Supervised Clustering with the Boost Similarity Metric Method for Face Retrieval". Applied Mechanics and Materials 543-547 (marzec 2014): 2720–23. http://dx.doi.org/10.4028/www.scientific.net/amm.543-547.2720.
Pełny tekst źródłaXiao, Qiao, Khuan Lee, Siti Aisah Mokhtar, Iskasymar Ismail, Ahmad Luqman bin Md Pauzi, Qiuxia Zhang i Poh Ying Lim. "Deep Learning-Based ECG Arrhythmia Classification: A Systematic Review". Applied Sciences 13, nr 8 (14.04.2023): 4964. http://dx.doi.org/10.3390/app13084964.
Pełny tekst źródłaNiu, Gang, Bo Dai, Makoto Yamada i Masashi Sugiyama. "Information-Theoretic Semi-Supervised Metric Learning via Entropy Regularization". Neural Computation 26, nr 8 (sierpień 2014): 1717–62. http://dx.doi.org/10.1162/neco_a_00614.
Pełny tekst źródłaWilde, Henry, Vincent Knight i Jonathan Gillard. "Evolutionary dataset optimisation: learning algorithm quality through evolution". Applied Intelligence 50, nr 4 (27.12.2019): 1172–91. http://dx.doi.org/10.1007/s10489-019-01592-4.
Pełny tekst źródłaZhukov, Alexey, Jenny Benois-Pineau i Romain Giot. "Evaluation of Explanation Methods of AI - CNNs in Image Classification Tasks with Reference-based and No-reference Metrics". Advances in Artificial Intelligence and Machine Learning 03, nr 01 (2023): 620–46. http://dx.doi.org/10.54364/aaiml.2023.1143.
Pełny tekst źródłaPinto, Danna, Anat Prior i Elana Zion Golumbic. "Assessing the Sensitivity of EEG-Based Frequency-Tagging as a Metric for Statistical Learning". Neurobiology of Language 3, nr 2 (2022): 214–34. http://dx.doi.org/10.1162/nol_a_00061.
Pełny tekst źródłaGomoluch, Paweł, Dalal Alrajeh i Alessandra Russo. "Learning Classical Planning Strategies with Policy Gradient". Proceedings of the International Conference on Automated Planning and Scheduling 29 (25.05.2021): 637–45. http://dx.doi.org/10.1609/icaps.v29i1.3531.
Pełny tekst źródłaDou, Jason Xiaotian, Lei Luo i Raymond Mingrui Yang. "An Optimal Transport Approach to Deep Metric Learning (Student Abstract)". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 11 (28.06.2022): 12935–36. http://dx.doi.org/10.1609/aaai.v36i11.21604.
Pełny tekst źródłaWang, Yabin, Zhiheng Ma, Zhiwu Huang, Yaowei Wang, Zhou Su i Xiaopeng Hong. "Isolation and Impartial Aggregation: A Paradigm of Incremental Learning without Interference". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 8 (26.06.2023): 10209–17. http://dx.doi.org/10.1609/aaai.v37i8.26216.
Pełny tekst źródłaGe, Ce, Jingyu Wang, Qi Qi, Haifeng Sun, Tong Xu i Jianxin Liao. "Semi-transductive Learning for Generalized Zero-Shot Sketch-Based Image Retrieval". Proceedings of the AAAI Conference on Artificial Intelligence 37, nr 6 (26.06.2023): 7678–86. http://dx.doi.org/10.1609/aaai.v37i6.25931.
Pełny tekst źródłaDe Santis, Enrico, Alessio Martino i Antonello Rizzi. "On component-wise dissimilarity measures and metric properties in pattern recognition". PeerJ Computer Science 8 (10.10.2022): e1106. http://dx.doi.org/10.7717/peerj-cs.1106.
Pełny tekst źródłaJaiswal, Mimansa, i Emily Mower Provost. "Privacy Enhanced Multimodal Neural Representations for Emotion Recognition". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 05 (3.04.2020): 7985–93. http://dx.doi.org/10.1609/aaai.v34i05.6307.
Pełny tekst źródłaYuan, Fei, Longtu Zhang, Huang Bojun i Yaobo Liang. "Simpson's Bias in NLP Training". Proceedings of the AAAI Conference on Artificial Intelligence 35, nr 16 (18.05.2021): 14276–83. http://dx.doi.org/10.1609/aaai.v35i16.17679.
Pełny tekst źródłaKhan, Koffka, i Wayne Goodridge. "Comparative study of One-Shot Learning in Dynamic Adaptive Streaming over HTTP : A Taxonomy-Based Analysis". International Journal of Advanced Networking and Applications 15, nr 01 (2023): 5822–30. http://dx.doi.org/10.35444/ijana.2023.15112.
Pełny tekst źródłaWOLFMAN, STEVEN A., i DANIEL S. WELD. "Combining linear programming and satisfiability solving for resource planning". Knowledge Engineering Review 16, nr 1 (marzec 2001): 85–99. http://dx.doi.org/10.1017/s0269888901000017.
Pełny tekst źródłaLin, Jianman, Jiantao Lin, Yuefang Gao, Zhijing Yang i Tianshui Chen. "Webly Supervised Fine-Grained Image Recognition with Graph Representation and Metric Learning". Electronics 11, nr 24 (11.12.2022): 4127. http://dx.doi.org/10.3390/electronics11244127.
Pełny tekst źródłaSamann, Fady Esmat Fathel, Adnan Mohsin Abdulazeez i Shavan Askar. "Fog Computing Based on Machine Learning: A Review". International Journal of Interactive Mobile Technologies (iJIM) 15, nr 12 (18.06.2021): 21. http://dx.doi.org/10.3991/ijim.v15i12.21313.
Pełny tekst źródłaElfakharany, Ahmed, i Zool Hilmi Ismail. "End-to-End Deep Reinforcement Learning for Decentralized Task Allocation and Navigation for a Multi-Robot System". Applied Sciences 11, nr 7 (24.03.2021): 2895. http://dx.doi.org/10.3390/app11072895.
Pełny tekst źródłaSotiropoulos, Dionisios N., Efthimios Alepis, Katerina Kabassi, Maria K. Virvou, George A. Tsihrintzis i Evangelos Sakkopoulos. "Artificial Immune System-Based Learning Style Stereotypes". International Journal on Artificial Intelligence Tools 28, nr 04 (czerwiec 2019): 1940008. http://dx.doi.org/10.1142/s0218213019400086.
Pełny tekst źródłaMwata-Velu, Tat’y, Juan Gabriel Avina-Cervantes, Jose Ruiz-Pinales, Tomas Alberto Garcia-Calva, Erick-Alejandro González-Barbosa, Juan B. Hurtado-Ramos i José-Joel González-Barbosa. "Improving Motor Imagery EEG Classification Based on Channel Selection Using a Deep Learning Architecture". Mathematics 10, nr 13 (1.07.2022): 2302. http://dx.doi.org/10.3390/math10132302.
Pełny tekst źródłaLiu, Pingping, Guixia Gou, Xue Shan, Dan Tao i Qiuzhan Zhou. "Global Optimal Structured Embedding Learning for Remote Sensing Image Retrieval". Sensors 20, nr 1 (4.01.2020): 291. http://dx.doi.org/10.3390/s20010291.
Pełny tekst źródłaLi, Hui, Jinhao Liu i Dian Wang. "A Fast Instance Segmentation Technique for Log End Faces Based on Metric Learning". Forests 14, nr 4 (13.04.2023): 795. http://dx.doi.org/10.3390/f14040795.
Pełny tekst źródłaMotaung, William B., Kingsley A. Ogudo i Chabalala S. Chabalala. "Optimal Video Compression Parameter Tuning for Digital Video Broadcasting (DVB) using Deep Reinforcement Learning". International Conference on Intelligent and Innovative Computing Applications 2022 (31.12.2022): 270–76. http://dx.doi.org/10.59200/iconic.2022.030.
Pełny tekst źródłaBenvenuto, Giovana A., Marilaine Colnago, Maurício A. Dias, Rogério G. Negri, Erivaldo A. Silva i Wallace Casaca. "A Fully Unsupervised Deep Learning Framework for Non-Rigid Fundus Image Registration". Bioengineering 9, nr 8 (5.08.2022): 369. http://dx.doi.org/10.3390/bioengineering9080369.
Pełny tekst źródłaSakakushev, Boris E., Blagoi I. Marinov, Penka P. Stefanova, Stefan St Kostianev i Evangelos K. Georgiou. "Striving for Better Medical Education: the Simulation Approach". Folia Medica 59, nr 2 (1.06.2017): 123–31. http://dx.doi.org/10.1515/folmed-2017-0039.
Pełny tekst źródłaKuang, Jiachen, Tangfei Tao, Qingqiang Wu, Chengcheng Han, Fan Wei, Shengchao Chen, Wenjie Zhou, Cong Yan i Guanghua Xu. "Domain-Adaptive Prototype-Recalibrated Network with Transductive Learning Paradigm for Intelligent Fault Diagnosis under Various Limited Data Conditions". Sensors 22, nr 17 (30.08.2022): 6535. http://dx.doi.org/10.3390/s22176535.
Pełny tekst źródłaManzoor, Sumaira, Ye-Chan An, Gun-Gyo In, Yueyuan Zhang, Sangmin Kim i Tae-Yong Kuc. "SPT: Single Pedestrian Tracking Framework with Re-Identification-Based Learning Using the Siamese Model". Sensors 23, nr 10 (19.05.2023): 4906. http://dx.doi.org/10.3390/s23104906.
Pełny tekst źródłaXu, Yanbing, Yanmei Zhang, Tingxuan Yue, Chengcheng Yu i Huan Li. "Graph-Based Domain Adaptation Few-Shot Learning for Hyperspectral Image Classification". Remote Sensing 15, nr 4 (18.02.2023): 1125. http://dx.doi.org/10.3390/rs15041125.
Pełny tekst źródłaAlshammari, Abdulaziz, i Rakan C. Chabaan. "Sppn-Rn101: Spatial Pyramid Pooling Network with Resnet101-Based Foreign Object Debris Detection in Airports". Mathematics 11, nr 4 (7.02.2023): 841. http://dx.doi.org/10.3390/math11040841.
Pełny tekst źródłaLi, Shuyuan, Huabin Liu, Rui Qian, Yuxi Li, John See, Mengjuan Fei, Xiaoyuan Yu i Weiyao Lin. "TA2N: Two-Stage Action Alignment Network for Few-Shot Action Recognition". Proceedings of the AAAI Conference on Artificial Intelligence 36, nr 2 (28.06.2022): 1404–11. http://dx.doi.org/10.1609/aaai.v36i2.20029.
Pełny tekst źródłaAlonso-Betanzos, Amparo, Verónica Bolón-Canedo, Guy R. Heyndrickx i Peter L. M. Kerkhof. "Exploring Guidelines for Classification of Major Heart Failure Subtypes by Using Machine Learning". Clinical Medicine Insights: Cardiology 9s1 (styczeń 2015): CMC.S18746. http://dx.doi.org/10.4137/cmc.s18746.
Pełny tekst źródłaUzair, Muhammad, Mohsen Eskandari, Li Li i Jianguo Zhu. "Machine Learning Based Protection Scheme for Low Voltage AC Microgrids". Energies 15, nr 24 (12.12.2022): 9397. http://dx.doi.org/10.3390/en15249397.
Pełny tekst źródłaMartinelli, M., C. J. A. P. Martins, S. Nesseris, D. Sapone, I. Tutusaus, A. Avgoustidis, S. Camera i in. "Euclid: Forecast constraints on the cosmic distance duality relation with complementary external probes". Astronomy & Astrophysics 644 (grudzień 2020): A80. http://dx.doi.org/10.1051/0004-6361/202039078.
Pełny tekst źródłaLyu, Yangxintong, Ionut Schiopu, Bruno Cornelis i Adrian Munteanu. "Framework for Vehicle Make and Model Recognition—A New Large-Scale Dataset and an Efficient Two-Branch–Two-Stage Deep Learning Architecture". Sensors 22, nr 21 (2.11.2022): 8439. http://dx.doi.org/10.3390/s22218439.
Pełny tekst źródłaAmari, Shun-ichi, Hyeyoung Park i Tomoko Ozeki. "Singularities Affect Dynamics of Learning in Neuromanifolds". Neural Computation 18, nr 5 (maj 2006): 1007–65. http://dx.doi.org/10.1162/neco.2006.18.5.1007.
Pełny tekst źródłaVoulodimos, Athanasios, Eftychios Protopapadakis, Iason Katsamenis, Anastasios Doulamis i Nikolaos Doulamis. "A Few-Shot U-Net Deep Learning Model for COVID-19 Infected Area Segmentation in CT Images". Sensors 21, nr 6 (22.03.2021): 2215. http://dx.doi.org/10.3390/s21062215.
Pełny tekst źródłaAnand, S. S., P. W. Hamilton, J. G. Hughes i D. A. Bell. "On Prognostic Models, Artificial Intelligence and Censored Observations". Methods of Information in Medicine 40, nr 01 (2001): 18–24. http://dx.doi.org/10.1055/s-0038-1634459.
Pełny tekst źródłaYAN, YUHONG, i HAN LIANG. "LAZY LEARNER ON DECISION TREE FOR RANKING". International Journal on Artificial Intelligence Tools 17, nr 01 (luty 2008): 139–58. http://dx.doi.org/10.1142/s0218213008003819.
Pełny tekst źródłaRayala, Venkat, i Satyanarayan Reddy Kalli. "Big Data Clustering Using Improvised Fuzzy C-Means Clustering". Revue d'Intelligence Artificielle 34, nr 6 (31.12.2020): 701–8. http://dx.doi.org/10.18280/ria.340604.
Pełny tekst źródłaLongo, Mathias, Matías Hirsch, Cristian Mateos i Alejandro Zunino. "Towards Integrating Mobile Devices into Dew Computing: A Model for Hour-Wise Prediction of Energy Availability". Information 10, nr 3 (26.02.2019): 86. http://dx.doi.org/10.3390/info10030086.
Pełny tekst źródłaTamm, Markus-Oliver, Yar Muhammad i Naveed Muhammad. "Classification of Vowels from Imagined Speech with Convolutional Neural Networks". Computers 9, nr 2 (1.06.2020): 46. http://dx.doi.org/10.3390/computers9020046.
Pełny tekst źródłaDave, Chitrak Vimalbhai. "An Efficient Framework for Cost and Effort Estimation of Scrum Projects". International Journal for Research in Applied Science and Engineering Technology 9, nr 11 (30.11.2021): 1478–87. http://dx.doi.org/10.22214/ijraset.2021.39030.
Pełny tekst źródłaGalindo-Noreña, Steven, David Cárdenas-Peña i Álvaro Orozco-Gutierrez. "Multiple Kernel Stein Spatial Patterns for the Multiclass Discrimination of Motor Imagery Tasks". Applied Sciences 10, nr 23 (2.12.2020): 8628. http://dx.doi.org/10.3390/app10238628.
Pełny tekst źródłaFeng, Jialiang, i Jie Gong. "AoI-Aware Optimization of Service Caching-Assisted Offloading and Resource Allocation in Edge Cellular Networks". Sensors 23, nr 6 (21.03.2023): 3306. http://dx.doi.org/10.3390/s23063306.
Pełny tekst źródłaPowers, David. "Unsupervised Learning of Linguistic Structure". International Journal of Corpus Linguistics 2, nr 1 (1.01.1997): 91–131. http://dx.doi.org/10.1075/ijcl.2.1.06pow.
Pełny tekst źródłaAzam, Abu Bakr, Yu Qing Chang, Matthew Leong Tze Ker, Denise Goh, Jeffrey Chun Tatt Lim, Mai Chan Lau, Benedict Tan, Lihui Huang, Joe Yeong i Yiyu Cai. "818 Using deep learning approaches with mIF images to enhance T cell identification for tumor -automation of infiltrating lymphocytes (TILs) scoring on H&E images". Journal for ImmunoTherapy of Cancer 9, Suppl 2 (listopad 2021): A855—A856. http://dx.doi.org/10.1136/jitc-2021-sitc2021.818.
Pełny tekst źródłaSamtani, Sagar, Yidong Chai i Hsinchun Chen. "Linking Exploits from the Dark Web to Known Vulnerabilities for Proactive Cyber Threat Intelligence: An Attention-Based Deep Structured Semantic Model". MIS Quarterly 46, nr 2 (24.05.2022): 911–46. http://dx.doi.org/10.25300/misq/2022/15392.
Pełny tekst źródła