Gotowa bibliografia na temat „Metric geometry of singularities”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Metric geometry of singularities”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Metric geometry of singularities"

1

Sabourau, Stéphane, i Zeina Yassine. "A systolic-like extremal genus two surface". Journal of Topology and Analysis 11, nr 03 (wrzesień 2019): 721–38. http://dx.doi.org/10.1142/s1793525319500298.

Pełny tekst źródła
Streszczenie:
It is known that the genus two surface admits a piecewise flat metric with conical singularities which is extremal for the systolic inequality among all nonpositively curved metrics. We prove that this piecewise flat metric is also critical for slow metric variations, without curvature restrictions, for another type of systolic inequality involving the lengths of the shortest noncontractible loops in different free homotopy classes.
Style APA, Harvard, Vancouver, ISO itp.
2

Stoica, Ovidiu-Cristinel. "Spacetimes with singularities". Analele Universitatii "Ovidius" Constanta - Seria Matematica 20, nr 2 (1.06.2012): 213–38. http://dx.doi.org/10.2478/v10309-012-0050-3.

Pełny tekst źródła
Streszczenie:
Abstract We report on some advances made in the problem of singularities in general relativity.First is introduced the singular semi-Riemannian geometry for metrics which can change their signature (in particular be degenerate). The standard operations like covariant contraction, covariant derivative, and constructions like the Riemann curvature are usually prohibited by the fact that the metric is not invertible. The things become even worse at the points where the signature changes. We show that we can still do many of these operations, in a different framework which we propose. This allows the writing of an equivalent form of Einstein's equation, which works for degenerate metric too.Once we make the singularities manageable from mathematical viewpoint, we can extend analytically the black hole solutions and then choose from the maximal extensions globally hyperbolic regions. Then we find space-like foliations for these regions, with the implication that the initial data can be preserved in reasonable situations. We propose qualitative models of non-primordial and/or evaporating black holes.We supplement the material with a brief note reporting on progress made since this talk was given, which shows that we can analytically extend the Schwarzschild and Reissner-Nordström metrics at and beyond the singularities, and the singularities can be made degenerate and handled with the mathematical apparatus we developed.
Style APA, Harvard, Vancouver, ISO itp.
3

Li, Chi. "On the limit behavior of metrics in the continuity method for the Kähler–Einstein problem on a toric Fano manifold". Compositio Mathematica 148, nr 6 (12.10.2012): 1985–2003. http://dx.doi.org/10.1112/s0010437x12000334.

Pełny tekst źródła
Streszczenie:
AbstractThis work is a continuation of the author’s previous paper [Greatest lower bounds on the Ricci curvature of toric Fano manifolds, Adv. Math. 226 (2011), 4921–4932]. On any toric Fano manifold, we discuss the behavior of the limit metric of a sequence of metrics which are solutions to a continuity family of complex Monge–Ampère equations in the Kähler–Einstein problem. We show that the limit metric satisfies a singular complex Monge–Ampère equation. This gives a conic-type singularity for the limit metric. Information on conic-type singularities can be read off from the geometry of the moment polytope.
Style APA, Harvard, Vancouver, ISO itp.
4

García Ariza, M. Á. "Degenerate Hessian structures on radiant manifolds". International Journal of Geometric Methods in Modern Physics 15, nr 06 (8.05.2018): 1850087. http://dx.doi.org/10.1142/s0219887818500871.

Pełny tekst źródła
Streszczenie:
We present a rigorous mathematical treatment of Ruppeiner geometry, by considering degenerate Hessian metrics defined on radiant manifolds. A manifold [Formula: see text] is said to be radiant if it is endowed with a symmetric, flat connection and a global vector field [Formula: see text] whose covariant derivative is the identity mapping. A degenerate Hessian metric on [Formula: see text] is a degenerate metric tensor that can locally be written as the covariant Hessian of a function, called potential. A function on [Formula: see text] is said to be extensive if its Lie derivative with respect to [Formula: see text] is the function itself. We show that the Hessian metrics appearing in equilibrium thermodynamics are necessarily degenerate, owing to the fact that their potentials are extensive (up to an additive constant). Manifolds having degenerate Hessian metrics always contain embedded Hessian submanifolds, which generalize the manifolds defined by constant volume in which Ruppeiner geometry is usually studied. By means of examples, we illustrate that linking scalar curvature to microscopic interactions within a thermodynamic system is inaccurate under this approach. In contrast, thermodynamic critical points seem to arise as geometric singularities.
Style APA, Harvard, Vancouver, ISO itp.
5

Birbrair, Lev, i Alexandre Fernandes. "Inner metric geometry of complex algebraic surfaces with isolated singularities". Communications on Pure and Applied Mathematics 61, nr 11 (listopad 2008): 1483–94. http://dx.doi.org/10.1002/cpa.20244.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

LUO, FENG. "COMBINATORIAL YAMABE FLOW ON SURFACES". Communications in Contemporary Mathematics 06, nr 05 (październik 2004): 765–80. http://dx.doi.org/10.1142/s0219199704001501.

Pełny tekst źródła
Streszczenie:
In this paper we develop an approach to conformal geometry of piecewise flat metrics on manifolds. In particular, we formulate the combinatorial Yamabe problem for piecewise flat metrics. In the case of surfaces, we define the combinatorial Yamabe flow on the space of all piecewise flat metrics associated to a triangulated surface. We show that the flow either develops removable singularities or converges exponentially fast to a constant combinatorial curvature metric. If the singularity develops, we show that the singularity is always removable by a surgery procedure on the triangulation. We conjecture that after finitely many such surgery changes on the triangulation, the flow converges to the constant combinatorial curvature metric as time approaches infinity.
Style APA, Harvard, Vancouver, ISO itp.
7

Botvinnik, Boris. "Manifolds with singularities accepting a metric of positive scalar curvature". Geometry & Topology 5, nr 2 (26.09.2001): 683–718. http://dx.doi.org/10.2140/gt.2001.5.683.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Larrañaga, Alexis, Natalia Herrera i Juliana Garcia. "Geometric Description of the Thermodynamics of the Noncommutative Schwarzschild Black Hole". Advances in High Energy Physics 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/641273.

Pełny tekst źródła
Streszczenie:
The thermodynamics of the noncommutative Schwarzschild black hole is reformulated within the context of the recently developed formalism of geometrothermodynamics (GTD). Using a thermodynamic metric which is invariant with respect to Legendre transformations, we determine the geometry of the space of equilibrium states and show that phase transitions, which correspond to divergencies of the heat capacity, are represented geometrically as singularities of the curvature scalar. This further indicates that the curvature of the thermodynamic metric is a measure of thermodynamic interaction.
Style APA, Harvard, Vancouver, ISO itp.
9

Ashtekar, Abhay, i Javier Olmedo. "Properties of a recent quantum extension of the Kruskal geometry". International Journal of Modern Physics D 29, nr 10 (lipiec 2020): 2050076. http://dx.doi.org/10.1142/s0218271820500765.

Pełny tekst źródła
Streszczenie:
Recently, it was shown that, in an effective description motivated by loop quantum gravity, singularities of the Kruskal spacetime are naturally resolved [A. Ashtekar, J. Olmedo and P. Singh, Phys. Rev. Lett. 121 (2018) 241301; A. Ashtekar, J. Olmedo and P. Singh, Phys. Rev. D 98 (2018) 126003]. In this paper, we explore a few properties of this quantum corrected effective metric. In particular, we (i) calculate the Hawking temperature associated with the horizon of the effective geometry and show that the quantum correction to the temperature is completely negligible for macroscopic black holes, just as one would hope; (ii) discuss the subtleties associated with the asymptotic properties of the spacetime metric, and show that the metric is asymptotically flat in a precise sense; (iii) analyze the asymptotic fall-off of curvature; and, (iv) show that the ADM energy is well defined (and agrees with that determined by the horizon area), even though the curvature falls off less rapidly than in the standard asymptotically flat context.
Style APA, Harvard, Vancouver, ISO itp.
10

Han, Yiwen, i XiaoXiong Zeng. "Legendre Invariance and Geometrothermodynamics Description of the 3D Charged-Dilaton Black Hole". Advances in High Energy Physics 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/865354.

Pełny tekst źródła
Streszczenie:
We first review Weinhold information geometry and Ruppeiner information geometry of 3D charged-dilaton black hole. Then, we use the Legendre invariant to introduce a 2-dimensional thermodynamic metric in the space of equilibrium states, which becomes singular at those points. According to the analysis of the heat capacities, these points are the places where phase transitions occur. This result is valid for the black hole, therefore, provides a geometrothermodynamics description of black hole phase transitions in terms of curvature singularities.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Metric geometry of singularities"

1

Oudrane, M'hammed. "Projections régulières, structure de Lipschitz des ensembles définissables et faisceaux de Sobolev". Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4034.

Pełny tekst źródła
Streszczenie:
Dans cette thèse, nous abordons des questions autour de la structure métrique des ensembles définissables dans les structures o-minimales.Dans la première partie, nous étudions les projections régulières au sens de Mostowski, nous prouvons que ces projections n'existent que pour les structures polynomialement bornées, nous utilisons les projections régulières pour refaire la preuve de Parusinski de l'existence des recouvrements réguliers. Dans la deuxième partie de cette thèse, nous étudions les faisceaux de Sobolev (au sens de Lebeau). Pour les fonctions de Sobolev de régularité entière positive, nous construisons ces faisceaux sur le site définissable d'une surface en nous basant sur des observations de base des domaines définissables dans le plan
In this thesis we address questions around the metric structure of definable sets in o-minimal structures. In the first part we study regular projections in the sense of Mostowski, we prove that these projections exists only for polynomially bounded structures, we use regular projections to re perform Parusinski's proof of the existence of regular covers. In the second part of this thesis, we study Sobolev sheaves (in the sense of Lebeau). For Sobolev functions of positive integer regularity, we construct these sheaves on the definable site of a surface based on basic observations of definable domains in the plane
Style APA, Harvard, Vancouver, ISO itp.
2

Lebl, Jiří́. "Singularities and Complexity in CR Geometry". Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2007. http://wwwlib.umi.com/cr/ucsd/fullcit?p3254327.

Pełny tekst źródła
Streszczenie:
Thesis (Ph. D.)--University of California, San Diego, 2007.
Title from first page of PDF file (viewed May 2, 2007). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 101-104).
Style APA, Harvard, Vancouver, ISO itp.
3

Ronaldson, Luke James. "The geometry of weak gravitational singularities". Thesis, University of Southampton, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.485292.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Coffey, Michael R. "Ricci flow and metric geometry". Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/67924/.

Pełny tekst źródła
Streszczenie:
This thesis considers two separate problems in the field of Ricci flow on surfaces. Firstly, we examine the situation of the Ricci flow on Alexandrov surfaces, which are a class of metric spaces equipped with a notion of curvature. We extend the existence and uniqueness results of Thomas Richard in the closed case to the setting of non-compact Alexandrov surfaces that are uniformly non-collapsed. We complement these results with an extensive survey that collects together, for the first time, the essential topics in the metric geometry of Alexandrov spaces due to a variety of authors. Secondly, we consider a problem in the well-posedness theory of the Ricci flow on surfaces. We show that given an appropriate initial Riemannian surface, we may construct a smooth, complete, immortal Ricci flow that takes on the initial surface in a geometric sense, in contrast to the traditional analytic notions of initial condition. In this way, we challenge the contemporary understanding of well-posedness for geometric equations.
Style APA, Harvard, Vancouver, ISO itp.
5

van, Staden Wernd Jakobus. "Metric aspects of noncommutative geometry". Diss., University of Pretoria, 2019. http://hdl.handle.net/2263/77893.

Pełny tekst źródła
Streszczenie:
We study noncommutative geometry from a metric point of view by constructing examples of spectral triples and explicitly calculating Connes's spectral distance between certain associated pure states. After considering instructive nite-dimensional spectral triples, the noncommutative geometry of the in nite-dimensional Moyal plane is studied. The corresponding spectral triple is based on the Moyal deformation of the algebra of Schwartz functions on the Euclidean plane.
Dissertation (MSc)--University of Pretoria, 2019.
Physics
MSc
Unrestricted
Style APA, Harvard, Vancouver, ISO itp.
6

Mangalath, Vishnu. "Singularities of Whitham Deformations". Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/25990.

Pełny tekst źródła
Streszczenie:
Constant mean curvature planes of finite type in Euclidean 3-space are in correspondence with spectral data, consisting of a hyperelliptic (spectral) curve, two meromorphic differentials, and a line bundle. A class of deformations one can consider are known as Whitham or period preserving deformations. Singularities of Whitham deformations can occur if the differentials have common roots on the spectral curve. In this thesis we are concerned with studying deformations within, and out of, the space of spectral data at which the Whitham equations are singular. We show in a special case that singular Whitham deformations correspond to certain planar graphs on CP1, and study the existence theory of these graphs.
Style APA, Harvard, Vancouver, ISO itp.
7

Palmer, Ian Christian. "Riemannian geometry of compact metric spaces". Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34744.

Pełny tekst źródła
Streszczenie:
A construction is given for which the Hausdorff measure and dimension of an arbitrary abstract compact metric space (X, d) can be encoded in a spectral triple. By introducing the concept of resolving sequence of open covers, conditions are given under which the topology, metric, and Hausdorff measure can be recovered from a spectral triple dependent on such a sequence. The construction holds for arbitrary compact metric spaces, generalizing previous results for fractals, as well as the original setting of manifolds, and also holds when Hausdorff and box dimensions differ---in particular, it does not depend on any self-similarity or regularity conditions on the space. The only restriction on the space is that it have positive s₀ dimensional Hausdorff measure, where s₀ is the Hausdorff dimension of the space, assumed to be finite. Also, X does not need to be embedded in another space, such as Rⁿ.
Style APA, Harvard, Vancouver, ISO itp.
8

Jägrell, Linus. "Geometry of the Lunin-Maldacena metric". Thesis, KTH, Teoretisk fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-153502.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Milicevic, Luka. "Topics in metric geometry, combinatorial geometry, extremal combinatorics and additive combinatorics". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/273375.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Persson, Nicklas. "Shortest paths and geodesics in metric spaces". Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-66732.

Pełny tekst źródła
Streszczenie:
This thesis is divided into three part, the first part concerns metric spaces and specically length spaces where the existence of shortest path between points is the main focus. In the second part, an example of a length space, the Riemannian geometry will be given. Here both a classical approach to Riemannian geometry will be given together with specic results when considered as a metric space. In the third part, the Finsler geometry will be examined both with a classical approach and trying to deal with it as a metric space.
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Metric geometry of singularities"

1

López, Antonio Campillo, i Luis Narváez Macarro, red. Algebraic Geometry and Singularities. Basel: Birkhäuser Basel, 1996. http://dx.doi.org/10.1007/978-3-0348-9020-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

1953-, Campillo Antonio, Narváez Macarro Luis 1957- i International Conference on Algebraic Geometry (3rd : 1991 : Rábida (Monastery)), red. Algebraic geometry and singularities. Basel: Birkhäuser Verlag, 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Snapper, Ernst. Metric affine geometry. New York: Dover Publications, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

G, Paré E., red. Descriptive geometry: Metric. Wyd. 7. New York: Macmillan, 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Libgober, Anatoly. Trends in Singularities. Basel: Birkhäuser Basel, 2002.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Blanlœil, Vincent, i Toru Ohmoto, red. Singularities in Geometry and Topology. Zuerich, Switzerland: European Mathematical Society Publishing House, 2012. http://dx.doi.org/10.4171/118.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Dai, Xianzhe, i Xiaochun Rong, red. Metric and Differential Geometry. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0257-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Metric and comparison geometry. Somerville, MA: International Press, 2007.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Melles, Caroline Grant, i Ruth I. Michler, red. Singularities in Algebraic and Analytic Geometry. Providence, Rhode Island: American Mathematical Society, 2000. http://dx.doi.org/10.1090/conm/266.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Neumann, Walter, i Anne Pichon, red. Introduction to Lipschitz Geometry of Singularities. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61807-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Metric geometry of singularities"

1

Ruano, Diego. "The Metric Structure of Linear Codes". W Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics, 537–61. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96827-8_24.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Burago, Yuri, i David Shoenthal. "Metric Geometry". W New Analytic and Geometric Methods in Inverse Problems, 3–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08966-8_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Cambanis, Stamatis, i Donald Richards. "Metric geometry". W I.J. Schoenberg Selected Papers, 189–91. Boston, MA: Birkhäuser Boston, 1988. http://dx.doi.org/10.1007/978-1-4612-3948-2_15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

de Jong, Theo, i Gerhard Pfister. "Deformations of Singularities". W Local Analytic Geometry, 339–73. Wiesbaden: Vieweg+Teubner Verlag, 2000. http://dx.doi.org/10.1007/978-3-322-90159-0_10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

de Jong, Theo, i Gerhard Pfister. "Plane Curve Singularities". W Local Analytic Geometry, 171–224. Wiesbaden: Vieweg+Teubner Verlag, 2000. http://dx.doi.org/10.1007/978-3-322-90159-0_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Millman, Richard S., i George D. Parker. "Incidence and Metric Geometry". W Geometry, 17–41. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-4436-3_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Bădescu, Lucian. "Quasi-homogeneous Singularities and Projective Geometry". W Projective Geometry and Formal Geometry, 39–48. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7936-1_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Brasselet, Jean-Paul. "Singularities and Noncommutative Geometry". W New Developments in Singularity Theory, 135–55. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0834-1_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Pop, Florian. "Alterations and Birational Anabelian Geometry". W Resolution of Singularities, 519–32. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8399-3_19.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Hofer, Helmut, Alberto Abbondandolo, Urs Frauenfelder i Felix Schlenk. "Lagrangian skeleta and plane curve singularities". W Symplectic Geometry, 181–223. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-19111-4_9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Metric geometry of singularities"

1

BIRBRAIR, L. "METRIC THEORY OF SINGULARITIES: LIPSCHITZ GEOMETRY OF SINGULAR SPACES". W Proceedings of the Trieste Singularity Summer School and Workshop. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812706812_0006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ghosal, Ashitava, i Bahram Ravani. "Differential Geometric Analysis of Singularities of Point Trajectories of Serial and Parallel Manipulators". W ASME 1998 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/detc98/mech-5967.

Pełny tekst źródła
Streszczenie:
Abstract In this paper, we present a differential-geometric analysis of singularities of point trajectories of two and three-degree-of-freedom serial and parallel manipulators. At non-singular configurations, the first order local properties are characterized by the metric coefficients, and, geometrically, by the shape and size of a velocity ellipse and ellipsoid for two and three-degree-of-freedom motions respectively. At singular configurations, the definition of a metric is no longer valid and the velocity ellipsoid degenerates to an ellipse, a line or a point, and the area or the volume of the velocity ellipse or ellipsoid becomes zero. The second and higher order properties, such as curvature, are also not defined at a singularity. In this paper, we use the rate of change of the area or volume to characterize the singularities of the point trajectory. For parallel manipulators, singularities may lead to either loss or gain of one or more degrees-of-freedom. For loss of degree of freedom, the ellipsoid degenerates to an ellipse, a line, or a point as in serial manipulators. For a gain of degree-of-freedom the singularities can be pictured as growth to lines, ellipses, and ellipsoids. The method presented gives a clear geometric picture as to the possible directions and magnitude of motion at a singularity and the local geometry near a singularity. The theoretical results are illustrated with the help of a general spatial 2R manipulator and a three-degree-of-freedom RPSSPR-SPR parallel manipulator.
Style APA, Harvard, Vancouver, ISO itp.
3

VERBITSKY, MISHA. "SINGULARITIES IN HYPERKÄHLER GEOMETRY". W Proceedings of the Second Meeting. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810038_0029.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Chaperon, Marc. "Singularities in contact geometry". W Geometry and Topology of Caustics – Caustics '02. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc62-0-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Goryunov, Victor, i Gabor Lippner. "Simple framed curve singularities". W Geometry and topology of caustics. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc82-0-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Fukuda, Takuo, i Stanisław Janeczko. "On singularities of Hamiltonian mappings". W Geometry and topology of caustics. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc82-0-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Berry, M. V. "WAVE GEOMETRY: A PLURALITY OF SINGULARITIES". W Proceedings of the International Conference on Fundamental Aspects of Quantum Theory — to Celebrate 30 Years of the Aharonov-Bohm-Effect. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814439251_0008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Joets, Alain. "Singularities in drawings of singular surfaces". W Geometry and topology of caustics. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc82-0-10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Lu, Zhengdong, Prateek Jain i Inderjit S. Dhillon. "Geometry-aware metric learning". W the 26th Annual International Conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1553374.1553461.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Ribotta, Roland, Ahmed Belaidi i Alain Joets. "Singularities, defects and chaos in organized fluids". W Geometry and Topology of Caustics – Caustics '02. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc62-0-17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii