Artykuły w czasopismach na temat „Methane Reforming Catalysts”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Methane Reforming Catalysts”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Manan, Wan Nabilah, Wan Nor Roslam Wan Isahak i Zahira Yaakob. "CeO2-Based Heterogeneous Catalysts in Dry Reforming Methane and Steam Reforming Methane: A Short Review". Catalysts 12, nr 5 (19.04.2022): 452. http://dx.doi.org/10.3390/catal12050452.
Pełny tekst źródłaJiang, Hong Tao, Hui Quan Li i Hao Fan. "Tri-Reforming of Methane over Pt Modified Ni/MgO Catalysts under Atmospheric Pressure – Thermal Distribution in the Catalyst Bed". Applied Mechanics and Materials 252 (grudzień 2012): 255–58. http://dx.doi.org/10.4028/www.scientific.net/amm.252.255.
Pełny tekst źródłaMeloni, Eugenio, Marco Martino i Vincenzo Palma. "A Short Review on Ni Based Catalysts and Related Engineering Issues for Methane Steam Reforming". Catalysts 10, nr 3 (22.03.2020): 352. http://dx.doi.org/10.3390/catal10030352.
Pełny tekst źródłaTungatarova, Svetlana, Galina Xanthopoulou, George Vekinis, Konstantinos Karanasios, Tolkyn Baizhumanova, Manapkhan Zhumabek i Marzhan Sadenova. "Ni-Al Self-Propagating High-Temperature Synthesis Catalysts in Dry Reforming of Methane to Hydrogen-Enriched Fuel Mixtures". Catalysts 12, nr 10 (18.10.2022): 1270. http://dx.doi.org/10.3390/catal12101270.
Pełny tekst źródłaYu, Xiaopeng, Fubao Zhang i Wei Chu. "Effect of a second metal (Co, Cu, Mn or Zr) on nickel catalysts derived from hydrotalcites for the carbon dioxide reforming of methane". RSC Advances 6, nr 74 (2016): 70537–46. http://dx.doi.org/10.1039/c6ra12335j.
Pełny tekst źródłaCho, Yohei, Akira Yamaguchi i Masahiro Miyauchi. "Photocatalytic Methane Reforming: Recent Advances". Catalysts 11, nr 1 (25.12.2020): 18. http://dx.doi.org/10.3390/catal11010018.
Pełny tekst źródłaOsaki, Toshihiko, i Toshiaki Mori. "The Catalysis of NiO-Al2O3 Aerogels for the Methane Reforming by Carbon Dioxide". Advances in Science and Technology 45 (październik 2006): 2137–42. http://dx.doi.org/10.4028/www.scientific.net/ast.45.2137.
Pełny tekst źródłaSivasangar, S., i Yun Hin Taufiq-Yap. "The Effect of CeO2 and Fe2O3 Dopants on Ni/ Alumina Based Catalyst for Dry Reforming of Methane to Hydrogen". Advanced Materials Research 364 (październik 2011): 519–23. http://dx.doi.org/10.4028/www.scientific.net/amr.364.519.
Pełny tekst źródłaGarbarino, Gabriella, Federico Pugliese, Tullio Cavattoni, Guido Busca i Paola Costamagna. "A Study on CO2 Methanation and Steam Methane Reforming over Commercial Ni/Calcium Aluminate Catalysts". Energies 13, nr 11 (1.06.2020): 2792. http://dx.doi.org/10.3390/en13112792.
Pełny tekst źródłaO'Malley, Alexander J., Stewart F. Parker i C. Richard A. Catlow. "Neutron spectroscopy as a tool in catalytic science". Chemical Communications 53, nr 90 (2017): 12164–76. http://dx.doi.org/10.1039/c7cc05982e.
Pełny tekst źródłaGomes, Ruan, Denilson Costa, Roberto Junior, Milena Santos, Cristiane Rodella, Roger Fréty, Alessandra Beretta i Soraia Brandão. "Dry Reforming of Methane over NiLa-Based Catalysts: Influence of Synthesis Method and Ba Addition on Catalytic Properties and Stability". Catalysts 9, nr 4 (30.03.2019): 313. http://dx.doi.org/10.3390/catal9040313.
Pełny tekst źródłaDedov, A. G., A. S. Loktev, V. A. Arkhipova, M. A. Bykov, A. A. Sadovnikov, K. A. Cherednichenko i G. A. Shandryuk. "A New Approach to the Preparation of Stable Oxide-Composite Cobalt–Samarium Catalysts for the Production of Hydrogen by Dry Reforming of Methane". Processes 11, nr 8 (31.07.2023): 2296. http://dx.doi.org/10.3390/pr11082296.
Pełny tekst źródłaItkulova, Sholpan S. "Carbon Dioxide Reforming of Methane over Zeolite-containing Catalysts". Eurasian Chemico-Technological Journal 11, nr 3 (4.04.2016): 231. http://dx.doi.org/10.18321/ectj285.
Pełny tekst źródłaRavil Mustafin i Igor Karpilov. "Effect of the Catalyst Shapes and the Packed Bed Structure on the Efficiency of Steam Methane Reforming". Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 104, nr 1 (3.04.2023): 124–40. http://dx.doi.org/10.37934/arfmts.104.1.124140.
Pełny tekst źródłaImada, Syota, Xiaobo Peng, Zexing Cai, Abdillah Sani Bin Mohd Najib, Masahiro Miyauchi, Hideki Abe i Takeshi Fujita. "NiYAl-Derived Nanoporous Catalysts for Dry Reforming of Methane". Materials 13, nr 9 (27.04.2020): 2044. http://dx.doi.org/10.3390/ma13092044.
Pełny tekst źródłaKuang, Xiao-Gang, Li Zhang, Yan-Lun Ren i Xing-Wei Wang. "Process intensification of hydrogen production by steam reforming of methane over structured channel packing catalysts". E3S Web of Conferences 385 (2023): 02018. http://dx.doi.org/10.1051/e3sconf/202338502018.
Pełny tekst źródłaHu, Yun Hang, i Eli Ruckenstein. "Comment on “Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO”". Science 368, nr 6492 (14.05.2020): eabb5459. http://dx.doi.org/10.1126/science.abb5459.
Pełny tekst źródłaZhang, Chengyang, Renkun Zhang, Hui Liu, Qinhong Wei, Dandan Gong, Liuye Mo, Hengcong Tao, Sha Cui i Luhui Wang. "One-Step Synthesis of Highly Dispersed and Stable Ni Nanoparticles Confined by CeO2 on SiO2 for Dry Reforming of Methane". Energies 13, nr 22 (15.11.2020): 5956. http://dx.doi.org/10.3390/en13225956.
Pełny tekst źródłaSaavedra Lopez, Johnny, Vanessa Lebarbier Dagle, Chinmay A. Deshmane, Libor Kovarik, Robert S. Wegeng i Robert A. Dagle. "Methane and Ethane Steam Reforming over MgAl2O4-Supported Rh and Ir Catalysts: Catalytic Implications for Natural Gas Reforming Application". Catalysts 9, nr 10 (25.09.2019): 801. http://dx.doi.org/10.3390/catal9100801.
Pełny tekst źródłaKhan, Wasim Ullah, Mohammad Rizwan Khan, Rosa Busquets i Naushad Ahmad. "Contribution of Oxide Supports in Nickel-Based Catalytic Elimination of Greenhouse Gases and Generation of Syngas". Energies 14, nr 21 (4.11.2021): 7324. http://dx.doi.org/10.3390/en14217324.
Pełny tekst źródłaYuan, Bo, Tao Zhu, Yiwei Han, Xueli Zhang, Meidan Wang i Chen Li. "Deactivation Mechanism and Anti-Deactivation Measures of Metal Catalyst in the Dry Reforming of Methane: A Review". Atmosphere 14, nr 5 (23.04.2023): 770. http://dx.doi.org/10.3390/atmos14050770.
Pełny tekst źródłaHua, Wei, Yong Chuan Dai i Hong Tao Jiang. "Noble Metal Catalysts for Methane Reforming in Material Application Engineering". Advanced Materials Research 648 (styczeń 2013): 83–87. http://dx.doi.org/10.4028/www.scientific.net/amr.648.83.
Pełny tekst źródłaLanre, Mahmud S., Ahmed E. Abasaeed, Anis H. Fakeeha, Ahmed A. Ibrahim, Abdulrahman S. Al-Awadi, Abdulrahman bin Jumah, Fahad S. Al-Mubaddel i Ahmed S. Al-Fatesh. "Lanthanum–Cerium-Modified Nickel Catalysts for Dry Reforming of Methane". Catalysts 12, nr 7 (29.06.2022): 715. http://dx.doi.org/10.3390/catal12070715.
Pełny tekst źródłaMacario, A., P. Frontera, S. Candamano, F. Crea, P. De Luca i P. L. Antonucci. "Nanostructured Catalysts for Dry-Reforming of Methane". Journal of Nanoscience and Nanotechnology 19, nr 6 (1.06.2019): 3135–47. http://dx.doi.org/10.1166/jnn.2019.16651.
Pełny tekst źródłaWysocka, Izabela, Jan Hupka i Andrzej Rogala. "Catalytic Activity of Nickel and Ruthenium–Nickel Catalysts Supported on SiO2, ZrO2, Al2O3, and MgAl2O4 in a Dry Reforming Process". Catalysts 9, nr 6 (17.06.2019): 540. http://dx.doi.org/10.3390/catal9060540.
Pełny tekst źródłaAsencios, Yvan J. O., Kariny F. M. Elias, Andressa de Zawadzki i Elisabete M. Assaf. "Synthesis-Gas Production from Methane over Ni/CeO2 Catalysts Synthesized by Co-Precipitation Method in Different Solvents". Methane 1, nr 2 (23.03.2022): 72–81. http://dx.doi.org/10.3390/methane1020007.
Pełny tekst źródłaMierczynski, Pawel, Natalia Stępińska, Magdalena Mosinska, Karolina Chalupka, Jadwiga Albinska, Waldemar Maniukiewicz, Jacek Rogowski, Magdalena Nowosielska i Malgorzata I. Szynkowska. "Hydrogen Production via the Oxy-Steam Reforming of LNG or Methane on Ni Catalysts". Catalysts 10, nr 3 (20.03.2020): 346. http://dx.doi.org/10.3390/catal10030346.
Pełny tekst źródłaGonçalves, Juliana F., i Mariana M. V. M. Souza. "Ni/x%Nb2O5/Al2O3 Catalysts Prepared via Coprecipitation-Wet Impregnation Method for Methane Steam Reforming". Current Catalysis 9, nr 1 (10.09.2020): 80–89. http://dx.doi.org/10.2174/2211544708666190423130340.
Pełny tekst źródłaSellam, Djamila, Kahina Ikkour, Sadia Dekkar, Hassiba Messaoudi, Taous Belaid i Anne Cécile Roger. "CO2 Reforming of Methane over LaNiO3 Perovskite Supported Catalysts: Influence of Silica Support". Bulletin of Chemical Reaction Engineering & Catalysis 14, nr 3 (1.12.2019): 568. http://dx.doi.org/10.9767/bcrec.14.3.3472.568-578.
Pełny tekst źródłaAzeem, Subhan, Rabya Aslam i Mahmood Saleem. "Dry Reforming of Methane with Mesoporous Ni/ZrO2 Catalyst". International Journal of Chemical Engineering 2022 (16.12.2022): 1–13. http://dx.doi.org/10.1155/2022/3139696.
Pełny tekst źródłaFasolini, Andrea, Silvia Ruggieri, Cristina Femoni i Francesco Basile. "Highly Active Catalysts Based on the Rh4(CO)12 Cluster Supported on Ce0.5Zr0.5 and Zr Oxides for Low-Temperature Methane Steam Reforming". Catalysts 9, nr 10 (25.09.2019): 800. http://dx.doi.org/10.3390/catal9100800.
Pełny tekst źródłaSaad, M. A., N. H. Abdurahman, Rosli Mohd Yunus, Mohammed Kamil i Omar I. Awad. "An Overview of Reforming Technologies and the Effect of Parameters on the Catalytic Performance of Mesoporous Silica/Alumina Supported Nickel Catalysts for Syngas Production by Methane Dry Reforming". Recent Innovations in Chemical Engineering (Formerly Recent Patents on Chemical Engineering) 13, nr 4 (2.06.2020): 303–22. http://dx.doi.org/10.2174/2405520413666200313130420.
Pełny tekst źródłaRakib, Abdelmajid, Cédric Gennequin, Thierry Dhainaut, Sylvain Ringot, Antoine Aboukaïs i Edmond Abi-Aad. "Promoting Effect of CeO2 Addition on Activity and Catalytic Stability in Steam Reforming of Methane over Ni/Al2O3". Advanced Materials Research 324 (sierpień 2011): 153–56. http://dx.doi.org/10.4028/www.scientific.net/amr.324.153.
Pełny tekst źródłaA. Ibrahim, Ahmed, Ashraf Amin, Ahmed S. Al-Fatesh, Nadavala Siva Kumar, Samsudeen Olajide Kasim, Abdulrhman S. Al-Awadi, Ahmed M. El-Toni, Ahmed Elhag Abasaeed i Anis H. Fakeeha. "Nanosized Ni/SBA-15 Catalysts for CO2 Reforming of CH4". Applied Sciences 9, nr 9 (10.05.2019): 1926. http://dx.doi.org/10.3390/app9091926.
Pełny tekst źródłaHossain, M. Anwar, Bamidele Victor Ayodele, Chin Kui Cheng i Maksudur R. Khan. "Syngas Production from Catalytic CO2 Reforming of CH4 over CaFe2O4 Supported Ni and Co Catalysts: Full Factorial Design Screening". Bulletin of Chemical Reaction Engineering & Catalysis 13, nr 1 (2.04.2018): 57. http://dx.doi.org/10.9767/bcrec.13.1.1197.57-73.
Pełny tekst źródłaSingh, Satyapaul A., Yaddanapudi Varun, Priyanka Goyal, I. Sreedhar i Giridhar Madras. "Feed Effects on Water–Gas Shift Activity of M/Co3O4-ZrO2 (M = Pt, Pd, and Ru) and Potassium Role in Methane Suppression". Catalysts 13, nr 5 (4.05.2023): 838. http://dx.doi.org/10.3390/catal13050838.
Pełny tekst źródłaYang, Hui, Hui Wang, Lisha Wei, Yong Yang, Yong-Wang Li, Xiao-dong Wen i Haijun Jiao. "Simple mechanisms of CH4 reforming with CO2 and H2O on a supported Ni/ZrO2 catalyst". Physical Chemistry Chemical Physics 23, nr 46 (2021): 26392–400. http://dx.doi.org/10.1039/d1cp04048k.
Pełny tekst źródłaFakeeha, A. H., A. S. Al–Fatesh i A. E. Abasaeed. "Ni/Y- Zeolite Catalysts for Carbon Dioxide Reforming of Methane". Advanced Materials Research 550-553 (lipiec 2012): 325–28. http://dx.doi.org/10.4028/www.scientific.net/amr.550-553.325.
Pełny tekst źródłaEwbank, Jessica L., Libor Kovarik, Christian C. Kenvin i Carsten Sievers. "Effect of preparation methods on the performance of Co/Al2O3 catalysts for dry reforming of methane". Green Chem. 16, nr 2 (2014): 885–96. http://dx.doi.org/10.1039/c3gc41782d.
Pełny tekst źródłaSamojeden, Bogdan, Marta Kamienowska, Armando Izquierdo Colorado, Maria Elena Galvez, Ilona Kolebuk, Monika Motak i Patrick Da Costa. "Novel Nickel- and Magnesium-Modified Cenospheres as Catalysts for Dry Reforming of Methane at Moderate Temperatures". Catalysts 9, nr 12 (14.12.2019): 1066. http://dx.doi.org/10.3390/catal9121066.
Pełny tekst źródłaLyu, Linghui, Yunxing Han, Qingxiang Ma, Shengene Makpal, Jian Sun, Xinhua Gao, Jianli Zhang, Hui Fan i Tian-Sheng Zhao. "Fabrication of Ni-Based Bimodal Porous Catalyst for Dry Reforming of Methane". Catalysts 10, nr 10 (20.10.2020): 1220. http://dx.doi.org/10.3390/catal10101220.
Pełny tekst źródłaShi, Yu, Shiwei Wang, Yiming Li, Fan Yang, Hongbo Yu, Yuting Chu, Tong Li i Hongfeng Yin. "Improving Anti-Coking Properties of Ni/Al2O3 Catalysts via Synergistic Effect of Metallic Nickel and Nickel Phosphides in Dry Methane Reforming". Materials 15, nr 9 (22.04.2022): 3044. http://dx.doi.org/10.3390/ma15093044.
Pełny tekst źródłaAbdelsadek, Z., S. Gonzalez-Cortes, O. Cherifi, D. Halliche i PJ Masset. "Reduction effect on the catalytic performances of NiAl-SPC takovite catalysts in syngas synthesis process". IOP Conference Series: Earth and Environmental Science 1167, nr 1 (1.05.2023): 012031. http://dx.doi.org/10.1088/1755-1315/1167/1/012031.
Pełny tekst źródłaYakovenko, R. E., V. B. Ilyin, A. P. Savostyanov, I. N. Zubkov, A. V. Dulnev i O. A. Semyonov. "Conversion of Liquefied Hydrocarbon Gases on Commercial Nickel Catalysts". Kataliz v promyshlennosti 19, nr 6 (14.11.2019): 455–64. http://dx.doi.org/10.18412/1816-0387-2019-6-455-464.
Pełny tekst źródłaAbiev, Rufat Sh, Dmitry A. Sladkovskiy, Kirill V. Semikin, Dmitry Yu Murzin i Evgeny V. Rebrov. "Non-Thermal Plasma for Process and Energy Intensification in Dry Reforming of Methane". Catalysts 10, nr 11 (22.11.2020): 1358. http://dx.doi.org/10.3390/catal10111358.
Pełny tekst źródłaLee, Jong-Heon, Seongbin Jo, Tae-Young Kim, Jin-Hyeok Woo, Yeji Lee, Min-Seok Kim, Hye-Ok Park, Soo-Chool Lee i Jae-Chang Kim. "Preparation of Eggshell-Type Ru/Al2O3 Catalysts for Hydrogen Production Using Steam-Methane Reforming on PEMFC". Catalysts 11, nr 8 (9.08.2021): 951. http://dx.doi.org/10.3390/catal11080951.
Pełny tekst źródłaAraújo, L. C. B. de, D. M. de A. Melo, M. A. de F. Melo, J. M. de F. Barros, R. M. Braga, C. de C. Costa i G. Rodrigues. "Nickel catalyst supported on magnesium and zinc aluminates (MgAl2O4 and ZnAl2O4) spinels for dry reforming of methane". Cerâmica 63, nr 365 (marzec 2017): 77–81. http://dx.doi.org/10.1590/0366-69132017633652056.
Pełny tekst źródłaWei, Ning, Jia Zhang, Hexiang Zhong, Liwei Pan, Zeyu Wang, Juan Wang i Yi Zhou. "Methane Steam Reforming Over NiO/CexZryO2-Sil-1 Catalyst Prepared by In-Situ Self-Assembly". Journal of Nanoscience and Nanotechnology 19, nr 11 (1.11.2019): 7416–20. http://dx.doi.org/10.1166/jnn.2019.16620.
Pełny tekst źródłaRusdan, Nisa Afiqah, Sharifah Najiha Timmiati, Wan Nor Roslam Wan Isahak, Zahira Yaakob, Kean Long Lim i Dalilah Khaidar. "Recent Application of Core-Shell Nanostructured Catalysts for CO2 Thermocatalytic Conversion Processes". Nanomaterials 12, nr 21 (2.11.2022): 3877. http://dx.doi.org/10.3390/nano12213877.
Pełny tekst źródłaMundhwa, Mayur, i Christopher P. Thurgood. "Improved performance of a catalytic plate reactor coated with distributed layers of reforming and combustion catalysts for hydrogen production". Reaction Chemistry & Engineering 3, nr 4 (2018): 487–514. http://dx.doi.org/10.1039/c8re00013a.
Pełny tekst źródła