Artykuły w czasopismach na temat „Methane Conversion - Hydrogen”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Methane Conversion - Hydrogen”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Kushch, S. D., V. E. Muradyan i N. S. Kuyunko. "Methane Conversion over Vacuum Carbon Black: Influence of Hydrogen". Eurasian Chemico-Technological Journal 3, nr 3 (5.07.2017): 163. http://dx.doi.org/10.18321/ectj560.
Pełny tekst źródłaVodopyanov A.V., Mansfeld D.A., Sintsov S.V., Kornev R.A., Preobrazhensky E.I., Chekmarev N.V. i Remez M.A. "Plasmolysis of methane using a high-frequency plasma torch". Technical Physics Letters 48, nr 12 (2022): 29. http://dx.doi.org/10.21883/tpl.2022.12.54942.19383.
Pełny tekst źródłaJin, Zhu, Liang Wang, Erik Zuidema, Kartick Mondal, Ming Zhang, Jian Zhang, Chengtao Wang i in. "Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol". Science 367, nr 6474 (9.01.2020): 193–97. http://dx.doi.org/10.1126/science.aaw1108.
Pełny tekst źródłaВодопьянов, А. В., Д. А. Мансфельд, С. В. Синцов, Р. А. Корнев, Е. И. Преображенский, Н. В. Чекмарев i М. А. Ремез. "Плазмолиз метана при помощи высокочастотного плазмотрона". Письма в журнал технической физики 48, nr 23 (2022): 34. http://dx.doi.org/10.21883/pjtf.2022.23.53950.19383.
Pełny tekst źródłaMyltykbayeva, L. K., K. Dossumov, G. E. Yergaziyeva, M. M. Telbayeva, А. Zh Zhanatova, N. А. Assanov, N. Makayeva i Zh Shaimerden. "Catalysts for methane conversion process". BULLETIN of the L.N. Gumilyov Eurasian National University. Chemistry. Geography. Ecology Series 134, nr 1 (2021): 44–53. http://dx.doi.org/10.32523/2616-6771-2021-134-1-44-53.
Pełny tekst źródłaMarquardt, Tobias, Sebastian Wendt i Stephan Kabelac. "Impact of Carbon Dioxide on the Non-Catalytic Thermal Decomposition of Methane". ChemEngineering 5, nr 1 (3.03.2021): 12. http://dx.doi.org/10.3390/chemengineering5010012.
Pełny tekst źródłaWang, Chang Mei, Wu Di Zhang, Yu Bao Chen, Fang Yin, Shi Qing Liu, Xing Lin Zhao i Jing Liu. "The Efficiency of Material Utilization and Energy Conversion of Biogas Fermentation by Annua". Advanced Materials Research 621 (grudzień 2012): 273–77. http://dx.doi.org/10.4028/www.scientific.net/amr.621.273.
Pełny tekst źródłaBelikov, A. E., V. A. Mal’tsev, O. A. Nerushev, S. A. Novopashin, S. Z. Sakhapov i D. V. Smovzh. "Methane conversion into hydrogen and carbon nanostructures". Journal of Engineering Thermophysics 19, nr 1 (16.02.2010): 23–30. http://dx.doi.org/10.1134/s1810232810010042.
Pełny tekst źródłaZhao, Te, Chusheng Chen i Hong Ye. "CFD Simulation of Hydrogen Generation and Methane Combustion Inside a Water Splitting Membrane Reactor". Energies 14, nr 21 (1.11.2021): 7175. http://dx.doi.org/10.3390/en14217175.
Pełny tekst źródłaLe, Thong Nguyen-Minh, Thu Bao Nguyen Le, Phat Tan Nguyen, Trang Thuy Nguyen, Quang Ngoc Tran, Toan The Nguyen, Yoshiyuki Kawazoe, Thang Bach Phan i Duc Manh Nguyen. "Insight into the direct conversion of methane to methanol on modified ZIF-204 from the perspective of DFT-based calculations". RSC Advances 13, nr 23 (2023): 15926–33. http://dx.doi.org/10.1039/d3ra02650g.
Pełny tekst źródłaChen, Luning, Zhiyuan Qi, Shuchen Zhang, Ji Su i Gabor A. Somorjai. "Catalytic Hydrogen Production from Methane: A Review on Recent Progress and Prospect". Catalysts 10, nr 8 (2.08.2020): 858. http://dx.doi.org/10.3390/catal10080858.
Pełny tekst źródłaYe, Jian Wen, Dong Lai Xie, Zhenhua Yang i Zhiyu Cao. "Simulation of Fluidized Bed Oxygen Permeable Membrane Reactors for Hydrogen Production from Natural Gas". Advanced Materials Research 608-609 (grudzień 2012): 1467–71. http://dx.doi.org/10.4028/www.scientific.net/amr.608-609.1467.
Pełny tekst źródłaLu, Yi-heng, Kang Li i Yu-wei Lu. "Microwave-assisted direct synthesis of butene from high-selectivity methane". Royal Society Open Science 4, nr 12 (grudzień 2017): 171367. http://dx.doi.org/10.1098/rsos.171367.
Pełny tekst źródłaJomnonkhaow, Umarin, Sureewan Sittijunda i Alissara Reungsang. "Hybrid Process for Bio-hydrogen and Methane Production from Hydrogenic Effluent: A Mini Review". Jurnal Kejuruteraan 33, nr 3 (30.08.2021): 385–90. http://dx.doi.org/10.17576/jkukm-2021-33(3)-01.
Pełny tekst źródłaNagai, Masatoshi, i Kenji Matsuda. "Hydrogen Production from Methane Conversion on Molybdenum Nitride". JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 39, nr 5 (2006): 575–79. http://dx.doi.org/10.1252/jcej.39.575.
Pełny tekst źródłaYin, Fang, Wu Di Zhang, Ling Xu, Jing Liu, Hong Yang i Xing Ling Zhao. "Contribution of H2 during the Two-Phase Anaerobic Digestion". Advanced Materials Research 908 (marzec 2014): 235–38. http://dx.doi.org/10.4028/www.scientific.net/amr.908.235.
Pełny tekst źródłaLiu, Mengying, Zeai Huang, Yunxiao Zhou, Junjie Zhan, Kuikui Zhang, Mingkai Yang i Ying Zhou. "Optimized Process for Melt Pyrolysis of Methane to Produce Hydrogen and Carbon Black over Ni Foam/NaCl-KCl Catalyst". Processes 11, nr 2 (23.01.2023): 360. http://dx.doi.org/10.3390/pr11020360.
Pełny tekst źródłaMatus, Е. V., I. Z. Ismagilov, E. S. Mikhaylova i Z. R. Ismagilov. "Hydrogen Production from Coal Industry Methane". Eurasian Chemico-Technological Journal 24, nr 2 (25.07.2022): 69. http://dx.doi.org/10.18321/ectj1320.
Pełny tekst źródłaKonno, Katsuya, Kaoru Onoe, Yasuyuki Takiguchi i Tatsuaki Yamaguchi. "Effect of Coexistent Hydrogen on the Selective Production of Ethane by Dehydrogenative Methane Coupling through Dielectric-Barrier Discharge under Ordinary Pressure at an Ambient Temperature". Journal of Fuels 2014 (1.01.2014): 1–5. http://dx.doi.org/10.1155/2014/286392.
Pełny tekst źródłaKarim, G. A., i G. Zhou. "The Uncatalyzed Partial Oxidation of Methane for the Production of Hydrogen With Recirculation". Journal of Energy Resources Technology 115, nr 4 (1.12.1993): 307–13. http://dx.doi.org/10.1115/1.2906437.
Pełny tekst źródłaPinaeva, L. G., i A. S. Noskov. "The modern level of catalysts and technologies for natural gas conversion to syngas". Kataliz v promyshlennosti 21, nr 5 (21.09.2021): 308–30. http://dx.doi.org/10.18412/1816-0387-2021-5-308-330.
Pełny tekst źródłaLee, Sunggeun, i Hankwon Lim. "Variation of the Number of Heat Sources in Methane Dry Reforming: A Computational Fluid Dynamics Study". International Journal of Chemical Engineering 2021 (24.11.2021): 1–15. http://dx.doi.org/10.1155/2021/4737513.
Pełny tekst źródłaYakovenko, R. E., V. B. Ilyin, A. P. Savostyanov, I. N. Zubkov, A. V. Dulnev i O. A. Semyonov. "Conversion of Liquefied Hydrocarbon Gases on Commercial Nickel Catalysts". Kataliz v promyshlennosti 19, nr 6 (14.11.2019): 455–64. http://dx.doi.org/10.18412/1816-0387-2019-6-455-464.
Pełny tekst źródłaXiao, Yong Shan, Li Yu Chen, Run Xia Lu i Cheng Qian Tang. "Selective Oxidation of Methane to Methanol with Organic Oxidants Catalyzed by Iodine in Non-Aqueous Acetic Acid Medium". Applied Mechanics and Materials 723 (styczeń 2015): 624–28. http://dx.doi.org/10.4028/www.scientific.net/amm.723.624.
Pełny tekst źródłaRawool, Sushma A., Rajesh Belgamwar, Rajkumar Jana, Ayan Maity, Ankit Bhumla, Nevzat Yigit, Ayan Datta, Günther Rupprechter i Vivek Polshettiwar. "Direct CO2 capture and conversion to fuels on magnesium nanoparticles under ambient conditions simply using water". Chemical Science 12, nr 16 (2021): 5774–86. http://dx.doi.org/10.1039/d1sc01113h.
Pełny tekst źródłaRusdan, Nisa Afiqah, Sharifah Najiha Timmiati, Wan Nor Roslam Wan Isahak, Zahira Yaakob, Kean Long Lim i Dalilah Khaidar. "Recent Application of Core-Shell Nanostructured Catalysts for CO2 Thermocatalytic Conversion Processes". Nanomaterials 12, nr 21 (2.11.2022): 3877. http://dx.doi.org/10.3390/nano12213877.
Pełny tekst źródłaMa, P. Y., Zhi Guo Tang, Y. L. Li, C. H. Nie, X. Z. He i Q. Z. Lin. "Conversion of Natural Gas to Hydrogen under Super Adiabatic Rich Combustion". Advanced Materials Research 105-106 (kwiecień 2010): 701–5. http://dx.doi.org/10.4028/www.scientific.net/amr.105-106.701.
Pełny tekst źródłaWeijma, J., i A. J. M. Stams. "Methanol conversion in high-rate anaerobic reactors". Water Science and Technology 44, nr 8 (1.10.2001): 7–14. http://dx.doi.org/10.2166/wst.2001.0452.
Pełny tekst źródłaMadon, Rais Hanizam, Mas Fawzi, Khairul Ilman Sarwani, Shahrul Azmir Osman, Mohd Azahari Razali i Abdul Wahab Mohammad. "Effect of Steam to Carbon Ratio (S:C) on Steam Methane Reforming’s yield over Coated Nickel Aluminide (Ni<sub>3</sub>Al) Catalyst in Micro Reactor". Jurnal Kejuruteraan 32, nr 4 (30.11.2020): 657–62. http://dx.doi.org/10.17576/jkukm-2020-32(4)-14.
Pełny tekst źródłaGarduño, M., Marquidia Pacheco, Joel Pacheco, Ricardo Valdivia, Alfredo Santana, Benoîte Lefort, Nadia Estrada i C. Rivera-Rodríguez. "Hydrogen production from methane conversion in a gliding arc". Journal of Renewable and Sustainable Energy 4, nr 2 (marzec 2012): 021202. http://dx.doi.org/10.1063/1.3663876.
Pełny tekst źródłaYao, Shuiliang, Akira Nakayama i Eiji Suzuki. "Acetylene and hydrogen from pulsed plasma conversion of methane". Catalysis Today 71, nr 1-2 (listopad 2001): 219–23. http://dx.doi.org/10.1016/s0920-5861(01)00432-1.
Pełny tekst źródłaYamani, Zain H. "Clean Production of Hydrogen via Laser-Induced Methane Conversion". Energy Sources 27, nr 8 (czerwiec 2005): 661–68. http://dx.doi.org/10.1080/00908310490449351.
Pełny tekst źródłaAndersen, Arnfin, Ivar M. Dahl, Klaus-Joachim Jens, Erling Rytter, Åse Slagtern i Åge Solbakken. "Hydrogen acceptor and membrane concepts for direct methane conversion". Catalysis Today 4, nr 3-4 (luty 1989): 389–97. http://dx.doi.org/10.1016/0920-5861(89)85035-7.
Pełny tekst źródłaMsheik, Malek, Sylvain Rodat i Stéphane Abanades. "CFD Simulation of a Hybrid Solar/Electric Reactor for Hydrogen and Carbon Production from Methane Cracking". Fluids 8, nr 1 (2.01.2023): 18. http://dx.doi.org/10.3390/fluids8010018.
Pełny tekst źródłaNichols, Eva M., Joseph J. Gallagher, Chong Liu, Yude Su, Joaquin Resasco, Yi Yu, Yujie Sun, Peidong Yang, Michelle C. Y. Chang i Christopher J. Chang. "Hybrid bioinorganic approach to solar-to-chemical conversion". Proceedings of the National Academy of Sciences 112, nr 37 (24.08.2015): 11461–66. http://dx.doi.org/10.1073/pnas.1508075112.
Pełny tekst źródłaGhasemzadeh, Kamran, Ehsan Andalib i Angelo Basile. "Modelling Study of Palladium Membrane Reactor Performance during Methan Steam Reforming using CFD Method". Chemical Product and Process Modeling 11, nr 1 (1.03.2016): 17–21. http://dx.doi.org/10.1515/cppm-2015-0055.
Pełny tekst źródłaVavilin, V. A., L. Ya Lokshina, S. V. Rytov, O. R. Kotsyurbenko, A. N. Nozhevnikova i S. N. Parshina. "Modelling methanogenesis during anaerobic conversion of complex organic matter at low temperatures". Water Science and Technology 36, nr 6-7 (1.09.1997): 531–38. http://dx.doi.org/10.2166/wst.1997.0633.
Pełny tekst źródłaWnukowski, Mateusz, Julia Gerber i Karolina Mróz. "Shifts in Product Distribution in Microwave Plasma Methane Pyrolysis Due to Hydrogen and Nitrogen Addition". Methane 1, nr 4 (15.11.2022): 286–99. http://dx.doi.org/10.3390/methane1040022.
Pełny tekst źródłaHong, Kyungpyo, Stephanie Nadya Sutanto, Jeong A. Lee i Jongsup Hong. "Ni-based bimetallic nano-catalysts anchored on BaZr0.4Ce0.4Y0.1Yb0.1O3−δ for internal steam reforming of methane in a low-temperature proton-conducting ceramic fuel cell". Journal of Materials Chemistry A 9, nr 10 (2021): 6139–51. http://dx.doi.org/10.1039/d0ta11359j.
Pełny tekst źródłaArutyunov, V. S., L. N. Strekova i A. V. Nikitin. "Partial Oxidation of Light Alkanes as a Base of New Generation of Gas Chemical Processes". Eurasian Chemico-Technological Journal 15, nr 4 (15.10.2013): 265. http://dx.doi.org/10.18321/ectj231.
Pełny tekst źródłaRavil Mustafin i Igor Karpilov. "Effect of the Catalyst Shapes and the Packed Bed Structure on the Efficiency of Steam Methane Reforming". Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 104, nr 1 (3.04.2023): 124–40. http://dx.doi.org/10.37934/arfmts.104.1.124140.
Pełny tekst źródłaTrianto, Azis, Ira Santrina J. C i Susilo Yuwono. "Simulasi produksi hidrogen melalui CO2 methane reforming pada reaktor membran". Jurnal Teknik Kimia Indonesia 6, nr 3 (2.10.2018): 666. http://dx.doi.org/10.5614/jtki.2007.6.3.2.
Pełny tekst źródłaMel, Maizirwan, Fouad Riyad Hussein Abdeen, Hamzah Mohd Salleh, Sany Izan Ihsan, Fazia Adyani Ahmad Fuad i Roy Hendroko Setyobudi. "Simulation Study of Bio-Methane Conversion into Hydrogen for Generating 500 kW of Power". MATEC Web of Conferences 164 (2018): 01027. http://dx.doi.org/10.1051/matecconf/201816401027.
Pełny tekst źródłaMori, Tohru, Shunichi Hoshino, Arthit Neramittagapong, Jun Kubo i Yutaka Morikawa. "Novel Activity of SnO2for Methanol Conversion: Formation of Methane, Carbon Dioxide, and Hydrogen". Chemistry Letters 31, nr 3 (marzec 2002): 390–91. http://dx.doi.org/10.1246/cl.2002.390.
Pełny tekst źródłaKumar, Gopalakrishnan, i Chiu-Yue Lin. "Biogenic Hydrogen Conversion of De-Oiled Jatropha Waste via Anaerobic Sequencing Batch Reactor Operation: Process Performance, Microbial Insights, andCO2Reduction Efficiency". Scientific World Journal 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/946503.
Pełny tekst źródłaBiswas, Saheli, Shambhu Singh Rathore, Aniruddha Pramod Kulkarni, Sarbjit Giddey i Sankar Bhattacharya. "A Theoretical Study on Reversible Solid Oxide Cells as Key Enablers of Cyclic Conversion between Electrical Energy and Fuel". Energies 14, nr 15 (26.07.2021): 4517. http://dx.doi.org/10.3390/en14154517.
Pełny tekst źródłaMrakin, Anton N., Olga V. Afanaseva i Oleg Yu Kuleshov. "CALCULATION OF HEAT TRANSFER INTENSITY OF GAS FUEL COMBUSTION PRODUCTS". Bulletin of the Tomsk Polytechnic University Geo Assets Engineering 334, nr 5 (31.05.2023): 109–15. http://dx.doi.org/10.18799/24131830/2023/5/3987.
Pełny tekst źródłaKuang, Xiao-Gang, Li Zhang, Yan-Lun Ren i Xing-Wei Wang. "Process intensification of hydrogen production by steam reforming of methane over structured channel packing catalysts". E3S Web of Conferences 385 (2023): 02018. http://dx.doi.org/10.1051/e3sconf/202338502018.
Pełny tekst źródłaMitoura dos Santos Junior, Julles, Jan Galvão Gomes, Antônio Carlos Daltro de Freitas i Reginaldo Guiradello. "An Analysis of the Methane Cracking Process for CO2-Free Hydrogen Production Using Thermodynamic Methodologies". Methane 1, nr 4 (7.10.2022): 243–61. http://dx.doi.org/10.3390/methane1040020.
Pełny tekst źródłaScheiblehner, David, Helmut Antrekowitsch, David Neuschitzer, Stefan Wibner i Andreas Sprung. "Hydrogen Production by Methane Pyrolysis in Molten Cu-Ni-Sn Alloys". Metals 13, nr 7 (21.07.2023): 1310. http://dx.doi.org/10.3390/met13071310.
Pełny tekst źródła