Gotowa bibliografia na temat „Methane Conversion - Hydrogen”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Methane Conversion - Hydrogen”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Methane Conversion - Hydrogen"
Kushch, S. D., V. E. Muradyan i N. S. Kuyunko. "Methane Conversion over Vacuum Carbon Black: Influence of Hydrogen". Eurasian Chemico-Technological Journal 3, nr 3 (5.07.2017): 163. http://dx.doi.org/10.18321/ectj560.
Pełny tekst źródłaVodopyanov A.V., Mansfeld D.A., Sintsov S.V., Kornev R.A., Preobrazhensky E.I., Chekmarev N.V. i Remez M.A. "Plasmolysis of methane using a high-frequency plasma torch". Technical Physics Letters 48, nr 12 (2022): 29. http://dx.doi.org/10.21883/tpl.2022.12.54942.19383.
Pełny tekst źródłaJin, Zhu, Liang Wang, Erik Zuidema, Kartick Mondal, Ming Zhang, Jian Zhang, Chengtao Wang i in. "Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol". Science 367, nr 6474 (9.01.2020): 193–97. http://dx.doi.org/10.1126/science.aaw1108.
Pełny tekst źródłaВодопьянов, А. В., Д. А. Мансфельд, С. В. Синцов, Р. А. Корнев, Е. И. Преображенский, Н. В. Чекмарев i М. А. Ремез. "Плазмолиз метана при помощи высокочастотного плазмотрона". Письма в журнал технической физики 48, nr 23 (2022): 34. http://dx.doi.org/10.21883/pjtf.2022.23.53950.19383.
Pełny tekst źródłaMyltykbayeva, L. K., K. Dossumov, G. E. Yergaziyeva, M. M. Telbayeva, А. Zh Zhanatova, N. А. Assanov, N. Makayeva i Zh Shaimerden. "Catalysts for methane conversion process". BULLETIN of the L.N. Gumilyov Eurasian National University. Chemistry. Geography. Ecology Series 134, nr 1 (2021): 44–53. http://dx.doi.org/10.32523/2616-6771-2021-134-1-44-53.
Pełny tekst źródłaMarquardt, Tobias, Sebastian Wendt i Stephan Kabelac. "Impact of Carbon Dioxide on the Non-Catalytic Thermal Decomposition of Methane". ChemEngineering 5, nr 1 (3.03.2021): 12. http://dx.doi.org/10.3390/chemengineering5010012.
Pełny tekst źródłaWang, Chang Mei, Wu Di Zhang, Yu Bao Chen, Fang Yin, Shi Qing Liu, Xing Lin Zhao i Jing Liu. "The Efficiency of Material Utilization and Energy Conversion of Biogas Fermentation by Annua". Advanced Materials Research 621 (grudzień 2012): 273–77. http://dx.doi.org/10.4028/www.scientific.net/amr.621.273.
Pełny tekst źródłaBelikov, A. E., V. A. Mal’tsev, O. A. Nerushev, S. A. Novopashin, S. Z. Sakhapov i D. V. Smovzh. "Methane conversion into hydrogen and carbon nanostructures". Journal of Engineering Thermophysics 19, nr 1 (16.02.2010): 23–30. http://dx.doi.org/10.1134/s1810232810010042.
Pełny tekst źródłaZhao, Te, Chusheng Chen i Hong Ye. "CFD Simulation of Hydrogen Generation and Methane Combustion Inside a Water Splitting Membrane Reactor". Energies 14, nr 21 (1.11.2021): 7175. http://dx.doi.org/10.3390/en14217175.
Pełny tekst źródłaLe, Thong Nguyen-Minh, Thu Bao Nguyen Le, Phat Tan Nguyen, Trang Thuy Nguyen, Quang Ngoc Tran, Toan The Nguyen, Yoshiyuki Kawazoe, Thang Bach Phan i Duc Manh Nguyen. "Insight into the direct conversion of methane to methanol on modified ZIF-204 from the perspective of DFT-based calculations". RSC Advances 13, nr 23 (2023): 15926–33. http://dx.doi.org/10.1039/d3ra02650g.
Pełny tekst źródłaRozprawy doktorskie na temat "Methane Conversion - Hydrogen"
Congiu, Brian Alexander. "Conversion of Carbon Dioxide and Hydrogen into Methane in Bench-scale Microcosms and Packed Column Reactors". Wright State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=wright1292783980.
Pełny tekst źródłaTong, Andrew S. "Application of the Moving-Bed Syngas Chemical Looping Process for High Syngas and Methane Conversion and Hydrogen Generation". The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1390774129.
Pełny tekst źródłaLuo, Siwei. "Conversion of Carbonaceous Fuel to Electricity, Hydrogen, and Chemicals via Chemical Looping Technology - Reaction Kinetics and Bench-Scale Demonstration". The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1397573499.
Pełny tekst źródłaFERRERO, DOMENICO. "Design, development and testing of SOEC-based Power-to-Gas systems for conversion and storage of RES into synthetic methane". Doctoral thesis, Politecnico di Torino, 2016. http://hdl.handle.net/11583/2645377.
Pełny tekst źródłaMrad, Mary. "La production d'hydrogène via la valorisation de la biomasse par reformage catalytique du méthanol". Thesis, Littoral, 2011. http://www.theses.fr/2011DUNK0409.
Pełny tekst źródłaIn order to study the hydrogen production via the catalytic steam reforming of methanol and to determine the influence of different parameter on this reaction, the performance of the Cu-Zn/CeO₂-Al₂O₃ catalysts was evaluated. The impregnation of copper over ceria or alumina has shown better catalytic performance than the impregnation of the zinc on the same supports. In the presence of ceria, the catalytic activity has been related to the dispersion of isolated Cu²⁺ species in interaction with the matrix, which were reduced during the pre-treatment phase of the catalyst. In the presence of alumina, stable and unreduced CuAl₂O₄ spinal species were formed, leading to a lower catalytic activity. Concerning the copper based catalysts impregnated on 10Ce10Al mixed oxide, the presence of alumina has promoted the dispersion of the ceria that enhances the oxygen exchange between the active phase and the support without influencing the active phase. The agglomerated CuO species formed in the catalysts with the high copper content have contributed to lower the by-product formation during the reaction. The promoter effect of the zinc was revealed by the stabilisation of the reduced copper into Cu⁺ species that are the most active species in the steam reforming of methanol reaction. No coke formation was revealed on the copper based catalysts, unlike the zinc based catalysts where carbon species were identified. The catalytic deactivation with time on stream was attributed to the formation of those species that blocks the accessibility of the catalytic active sites
Guenot, Benoit. "Etude de matériaux catalytiques pour la conversion électrochimique de l'énergie Clean hydrogen generation from the electrocatalytic oxidation of methanol inside a proton exchange membrane electrolysis cell (PEMEC): effect of methanol concentration and working temperature Electrochemical reforming of Dimethoxymethane in a Proton Exchange Membrane Electrolysis Cell: a way to generate clean hydrogen for low temperature fuel cells". Thesis, Montpellier, Ecole nationale supérieure de chimie, 2017. http://www.theses.fr/2017ENCM0004.
Pełny tekst źródłaHydrogen is a promising energy vector, particularly for energy storage from intermittent energy sources such as solar or wind. The development of its production methods and its electrochemical conversion represents a major challenge in the context of energy transition in which we live nowadays. Fuel cells and electrolyzers using PEM technology (Proton Exchange Membrane) are mature electrochemical energy conversion systems, while reversible systems capable of performing both functions – unitized regenerative fuel cells – are still in the early stage of development. Their main technological bottleneck is the design of a bifunctional oxygen electrode. The catalytic materials used in these systems are mainly noble metals and it is necessary to reduce as much as possible their loading in the electrodes to decrease the system cost. Three complementary aspects have been developed during this thesis. On the one hand, iridium and ruthenium oxides have been prepared by hydrothermal treatment in order to catalyze the oxygen evolution under electrolyzer operation. On the other hand, platinum-based catalysts supported on non-carbonaceous materials, especially titanium nitride, have been synthesized by colloidal routes, in order to catalyze the oxygen reduction under fuel cell operation. The combination of these materials is the first step towards the design of a bifunctional oxygen electrode. The third topic focuses on the production of hydrogen and proposes an alternative to the oxidation of water. The electrochemical oxidation of organic compounds such as methanol or dimethoxymethane using platinum and ruthenium based catalysts allows producing clean hydrogen with a lower electrical energy consumption compared to the electrolysis of water
Dias, Probst Luiz Fernando. "Etude de la conversion des oxydes de carbone en hydrocarbures et en alcools en présence de catalyseurs au Nickel et Molybdène supportés". Poitiers, 1989. http://www.theses.fr/1989POIT2297.
Pełny tekst źródłaKirchberger, Felix [Verfasser], Johannes A. [Akademischer Betreuer] Lercher, Johannes A. [Gutachter] Lercher, Gary L. [Gutachter] Haller i Klaus [Gutachter] Köhler. "Formation and reactions of hydrogen-deficient species during the conversion of methanol and dimethyl ether on MFI zeolites / Felix Kirchberger ; Gutachter: Johannes A. Lercher, Gary L. Haller, Klaus Köhler ; Betreuer: Johannes A. Lercher". München : Universitätsbibliothek der TU München, 2019. http://d-nb.info/1193177723/34.
Pełny tekst źródłaMohammed, Saad Abdul Basset. "Caracterisation par spectroscopie ft-ir de l'adsorption et de la reactivite de composes sulfures sur alumine : effet de l'ajout de sodium". Caen, 1986. http://www.theses.fr/1986CAEN2030.
Pełny tekst źródłaChang, Wan-Yu, i 張琬渝. "Conversion of Methane for Producing Hydrogen Using a MW Plasma/Ni Catalysts Hybrid Reactor". Thesis, 2008. http://ndltd.ncl.edu.tw/handle/87062698437471354097.
Pełny tekst źródła國立高雄應用科技大學
化學工程系碩士班
96
Direct conversion of methane to hydrogen is usually performed by using high temperature catalysts. In this study, pyrolysis and steam reforming of methane to hydrogen-rich fuel in an atmospheric-pressure microwave plasma/Ni-catalyst hybrid system were demonstrated. The effects of operational parameters, including with/without catalysts coupled with applied power, inlet CH4 concentration and inlet H2O/CH4 molar ratio on the conversion of methane, selectivity of hydrogen, and energy consumption were discussed. Experimental results showed that the nickel catalysts could be heated to 750℃ by the effluents that flowed through the discharge zone. At plasma/catalyst pyrolysis condition, a higher conversion of methane, and selectivity of hydrogen and carbon black were achieved than that of without catalyst environment, reaching 93.2%, 86.6%, and 49.5%, respectively, at 1400 W, [CH4]in = 5%, and 12 slm. However, a lower energy consumption was carried out at a lower applied power or a higher inlet methane concentration, being 10 eV/molecule-H2 at 800 W, [CH4]in = 15%, 12 slm. The results for steam reforming of methane showed that the conversion of methane and selectivity of hydrogen were not affected apparently regardless of the usage of catalyst, while the selectivity of hydrogen was higher than that of by pyrolysis of methane. At inlet H2O/CH4 ratio = 3, 1000 W, [CH4]in = 5%, 12 slm, the selectivity of hydrogen was as high as 95.1% with the conversion of methane and selectivity of carbon black being 88.6% and 60.6%, respectively. The gaseous byproducts were C2H2 (minor) with trace of HCN and C2H4 for the plasmalysis of methane, as well as were CO and C2H2 (minor) with trace of CO2, C2H4 and HCN for the steaming reforming of methane. The solid byproduct was mainly carbon black for either pyrolysis or steam reforming reaction. The structure of elliptic/spherical carbon black particles was graphite-rhombohedral with a particle size of about 30-40 nm. Keywords: Microwave Discharge, Nickel Catalysts, Methane, Pyrolysis, Steam Reforming, Hydrogen, Carbon black
Części książek na temat "Methane Conversion - Hydrogen"
Larson, Eric D., i Ryan E. Katofsky. "Production of Hydrogen and Methanol via Biomass Gasification". W Advances in Thermochemical Biomass Conversion, 495–510. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1336-6_37.
Pełny tekst źródłaHargreaves, Justin S. J., Graham J. Hutchings i Richard W. Joyner. "Hydrogen Production in Methane Coupling Over Magnesium Oxide". W Natural Gas Conversion, 155–59. Elsevier, 1991. http://dx.doi.org/10.1016/s0167-2991(08)60075-0.
Pełny tekst źródłaWinarta, Joseph, Andra Yung i Bin Mu. "Hydrogen and methane storage in nanoporous materials". W Nanoporous Materials for Molecule Separation and Conversion, 327–50. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-818487-5.00010-8.
Pełny tekst źródłaKikuchi, E., S. Uemiya i T. Matsuda. "Hydrogen Production from Methane Steam Reforming Assisted by Use of Membrane Reactor". W Natural Gas Conversion, 509–15. Elsevier, 1991. http://dx.doi.org/10.1016/s0167-2991(08)60117-2.
Pełny tekst źródłaOtsuka, K., A. Mito, S. Takenaka i I. Yamanaka. "Production and storage of hydrogen from methane mediated by metal oxides". W Natural Gas Conversion VI, 215–20. Elsevier, 2001. http://dx.doi.org/10.1016/s0167-2991(01)80306-2.
Pełny tekst źródłade Klerk, Arno, i Vinay Prasad. "Methane for Transportation Fuel and Chemical Production". W Materials for a Sustainable Future, 327–84. The Royal Society of Chemistry, 2012. http://dx.doi.org/10.1039/bk9781849734073-00327.
Pełny tekst źródłaBorry, Richard W., Eric C. Lu, Young-Ho Kim i Enrique Iglesia. "Non-oxidative catalytic conversion of methane with continuous hydrogen removal". W Natural Gas Conversion V, Proceedings ofthe 5th International Natural Gas Conversion Symposium,, 403–10. Elsevier, 1998. http://dx.doi.org/10.1016/s0167-2991(98)80465-5.
Pełny tekst źródłaGaluszka, J., i D. Liu. "Methane to syngas: Development of non-coking catalyst and hydrogen-permselective membrane". W Natural Gas Conversion VI, 363–68. Elsevier, 2001. http://dx.doi.org/10.1016/s0167-2991(01)80330-x.
Pełny tekst źródłaChoudhary, T. V., C. Sivadinarayana, A. Klinghoffer i D. W. Goodman. "Catalytic Decomposition of Methane: Towards Production of CO-free Hydrogen for Fuel Cells". W Natural Gas Conversion VI, 197–202. Elsevier, 2001. http://dx.doi.org/10.1016/s0167-2991(01)80303-7.
Pełny tekst źródłaSteinberg, M. "THE DIRECT USE OF NATURAL GAS (METHANE) FOR CONVERSION OF CARBONACEOUS RAW MATERIALS TO FUELS AND CHEMICAL FEEDSTOCKS". W Hydrogen Systems, 217–28. Elsevier, 1986. http://dx.doi.org/10.1016/b978-1-4832-8375-3.50081-3.
Pełny tekst źródłaStreszczenia konferencji na temat "Methane Conversion - Hydrogen"
Wang, Feng, Jing Zhou i Qiang Wen. "Transport Mechanism of Methane Steam Reforming on Fixed Bed Catalyst Heated by High Temperature Helium for Hydrogen Production: A CFD Investigation". W 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-67641.
Pełny tekst źródłaSanches, Lucas, i Armando Caldeira-Pires. "Power-to-Gas Technological Systems: Conversion of Electricity in Hydrogen and Methane". W 25th International Congress of Mechanical Engineering. ABCM, 2019. http://dx.doi.org/10.26678/abcm.cobem2019.cob2019-0509.
Pełny tekst źródłaBade Shrestha, S. O., i G. A. Karim. "Hydrogen as an additive to methane for spark ignition engine applications". W IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203). IEEE, 1997. http://dx.doi.org/10.1109/iecec.1997.661890.
Pełny tekst źródłaLiu, Shiyun, Danhua Mei i Xin Tu. "Conversion of methane into hydrogen and C2 hydrocarbons in a dielectric barrier discharge reactor". W 2015 IEEE International Conference on Plasma Sciences (ICOPS). IEEE, 2015. http://dx.doi.org/10.1109/plasma.2015.7179786.
Pełny tekst źródłaYan, Keju, Qingwang Yuan, Xiangyu Jie, Xiaoqiang Li, Juske Horita i Jacob Stephens. "Microwave-Assisted Catalytic Heating for Enhanced Clean Hydrogen Generation from Methane Cracking in Shale Rocks". W SPE Annual Technical Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/210292-ms.
Pełny tekst źródłaAle, B. B., i I. Wierzba. "The flammability limits of hydrogen and methane in air at moderately elevated temperatures". W IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203). IEEE, 1997. http://dx.doi.org/10.1109/iecec.1997.661895.
Pełny tekst źródłaKuznetsov, Vladmir V., Oleg V. Vitovsky i Stanislav P. Kozlov. "Heat and Mass Transfer With Chemical Reactions Producing Hydrogen in Microchannels". W ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2011. http://dx.doi.org/10.1115/icnmm2011-58203.
Pełny tekst źródłaKuo, Wei-Chih, C. Thomas Avedisian i Wing Tsang. "Conversion of Glycerine to Synthesis Gas and Methane by Film Boiling". W ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64449.
Pełny tekst źródłaEilers, Benn, Vinod Narayanan, Sourabh Apte i John Schmitt. "Steam-Methane Reforming in a Microchannel Under Constant and Variable Axial Surface Temperature Profiles". W ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44390.
Pełny tekst źródłaParajuli, Pradeep, Yejun Wang, Matthew Hay i Waruna D. Kulatilaka. "Hydrogen Atom Imaging in High-Pressure Flames Using Femtosecond Two-Photon LIF". W Laser Applications to Chemical, Security and Environmental Analysis. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/lacsea.2022.lth3e.4.
Pełny tekst źródłaRaporty organizacyjne na temat "Methane Conversion - Hydrogen"
Tang, Yongchun, Di Zhu, Fei Meng i Jing Zhao. Highly Efficient Non-Oxidative Methane Conversion with Continuous Hydrogen Removal. Office of Scientific and Technical Information (OSTI), grudzień 2016. http://dx.doi.org/10.2172/1497214.
Pełny tekst źródłaAsvapathanagul, Pitiporn, Leanne Deocampo i Nicholas Banuelos. Biological Hydrogen Gas Production from Food Waste as a Sustainable Fuel for Future Transportation. Mineta Transportation Institute, lipiec 2022. http://dx.doi.org/10.31979/mti.2021.2141.
Pełny tekst źródłaAsvapathanagul, Pitiporn, Leanne Deocampo i Nicholas Banuelos. Biological Hydrogen Gas Production from Food Waste as a Sustainable Fuel for Future Transportation. Mineta Transportation Institute, lipiec 2022. http://dx.doi.org/10.31979/mti.2022.2141.
Pełny tekst źródła