Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: METALLIC CARBON NANOTUBES.

Książki na temat „METALLIC CARBON NANOTUBES”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 16 najlepszych książek naukowych na temat „METALLIC CARBON NANOTUBES”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj książki z różnych dziedzin i twórz odpowiednie bibliografie.

1

Rao, Bakshi Srinivasa, i Lahiri Debrupa, red. Carbon nanotubes: Reinforced metal matrix composites. Boca Raton: CRC Press, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Agarwal, Arvind, Srinivasa Rao Bakshi, Debrupa Lahiri, Andy Nieto i Ankita Bisht. Carbon Nanotubes. Taylor & Francis Group, 2021.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Agarwal, Arvind, Srinivasa Rao Bakshi i Debrupa Lahiri. Carbon Nanotubes. Taylor & Francis Group, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Kamarás, Katalin, i Àron Pekker. Identification and separation of metallic and semiconducting carbon nanotubes. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.4.

Pełny tekst źródła
Streszczenie:
This article describes the identification and separation of metallic and semiconducting carbon nanotubes according to their electric properties. It first provides an overview of the electronic structure of nanotubes, focusing on how their metallic and semiconducting properties arise. It then considers the most widely used characterization techniques used in determining metallic or semiconducting behavior, including Raman spectroscopy and photoluminescence measurements. It also discusses specific chirality-selective growth techniques, physical postgrowth selection methods, enrichment by chirality-sensitive chemical reactions, and modification of transport properties without change in chirality. The article concludes with a review of some applications of metallic and semiconducting carbon nanotubes as transparent conductive coatings.
Style APA, Harvard, Vancouver, ISO itp.
5

Zhang, Lianchi. Carbon Nanotubes and Their Composites: Properties, Mechanics and Engineering Applications. Elsevier Science & Technology Books, 2019.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Agarwal, Arvind, Srinivasa Rao Bakshi, Debrupa Lahiri, Andy Nieto i Ankita Bisht. Carbon Nanotubes: Reinforced Metal Matrix Composites. Taylor & Francis Group, 2021.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Carbon Nanotubes: Reinforced Metal Matrix Composites. Taylor & Francis Group, 2021.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Agarwal, Arvind, Srinivasa Rao Bakshi i Debrupa Lahiri. Carbon Nanotubes: Reinforced Metal Matrix Composites. Taylor & Francis Group, 2018.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Agarwal, Arvind, Srinivasa Rao Bakshi i Debrupa Lahiri. Carbon Nanotubes: Reinforced Metal Matrix Composites. Taylor & Francis Group, 2018.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Agarwal, Arvind, Srinivasa Rao Bakshi i Debrupa Lahiri. Carbon Nanotubes: Reinforced Metal Matrix Composites. Taylor & Francis Group, 2018.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Agarwal, Arvind, Srinivasa Rao Bakshi i Debrupa Lahiri. Carbon Nanotubes: Reinforced Metal Matrix Composites. Taylor & Francis Group, 2018.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Agarwal, Arvind, Srinivasa Rao Bakshi i Debrupa Lahiri. Carbon Nanotubes: Reinforced Metal Matrix Composites. Taylor & Francis Group, 2017.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Agarwal, Arvind, Srinivasa Rao Bakshi, Debrupa Lahiri, Andy Nieto i Ankita Bisht. Carbon Nanotubes: Reinforced Metal Matrix Composites. Taylor & Francis Group, 2021.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Binh, Vu Thien. Electron cold sources: Nanotechnology contribution to field emitters. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.21.

Pełny tekst źródła
Streszczenie:
This article reviews recent advances in field emission cathodes and their applications, focusing on a number of possibilities emerging from the field of nanotechnology. It begins with an overview of the driving forces for the evolution of cold cathodes, laying emphasis on their fundamental characteristics and industrial applications as well as the bottlenecks of metallic field emitters. It then considers single-atom emitters, followed by different examples where the advent of nanotechnology has contributed towards improving new cold cathodes. It also discusses the Fresnel projection microscope and the microgun, a route to the microcolumn approach which is associated with the nanotip; a host of material issues for field emitters, taking into account carbon nanocompounds; carbon-nanotube field emitters; and carbon-nanopearl field emitters. The article concludes with an evaluation of the applications and uses of carbon nanocompounds, carbon nanotubes and carbon nanopearls as cold cathodes.
Style APA, Harvard, Vancouver, ISO itp.
15

Narlikar, A. V., i Y. Y. Fu, red. Oxford Handbook of Nanoscience and Technology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.001.0001.

Pełny tekst źródła
Streszczenie:
This volume highlights engineering and related developments in the field of nanoscience and technology, with a focus on frontal application areas like silicon nanotechnologies, spintronics, quantum dots, carbon nanotubes, and protein-based devices as well as various biomolecular, clinical and medical applications. Topics include: the role of computational sciences in Si nanotechnologies and devices; few-electron quantum-dot spintronics; spintronics with metallic nanowires; Si/SiGe heterostructures in nanoelectronics; nanoionics and its device applications; and molecular electronics based on self-assembled monolayers. The volume also explores the self-assembly strategy of nanomanufacturing of hybrid devices; templated carbon nanotubes and the use of their cavities for nanomaterial synthesis; nanocatalysis; bifunctional nanomaterials for the imaging and treatment of cancer; protein-based nanodevices; bioconjugated quantum dots for tumor molecular imaging and profiling; modulation design of plasmonics for diagnostic and drug screening; theory of hydrogen storage in nanoscale materials; nanolithography using molecular films and processing; and laser applications in nanotechnology. The volume concludes with an analysis of the various risks that arise when using nanomaterials.
Style APA, Harvard, Vancouver, ISO itp.
16

Launay, Jean-Pierre, i Michel Verdaguer. The mastered electron: molecular electronics and spintronics, molecular machines. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814597.003.0005.

Pełny tekst źródła
Streszczenie:
After a historical account of the evolution which led to the concept of Molecular Electronics, the “Hybrid Molecular Electronics” approach (that is, molecules connected to nanosized metallic electrodes) is discussed. The different types of transport (one-step, two-step with different forms of tunnelling) are described, including the case where the molecule is paramagnetic (Kondo resonance). Several molecular achievements are presented: wires, diodes, memory cells, field-effect transistors, switches, using molecules, but also carbon nanotubes. A spin-off result is the possibility of imaging Molecular Orbitals. The emerging field of molecular spintronics is presented. Besides hybrid devices, examples are given of electronic functionalities using ensembles of molecules, either in solution (logical functions) or in the solid state (memory elements). The relation with the domain of Quantum Computing is presented, including the particular domain of Quantum Hamiltonian Computing. The chapter finishes by an introduction to molecular machines, with the problem of the directional control of their motion.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii