Gotowa bibliografia na temat „METALLIC CARBON NANOTUBES”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „METALLIC CARBON NANOTUBES”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "METALLIC CARBON NANOTUBES"
Dadashyan L.H., Trofimov R.R., Konobeeva N.N. i Belonenko M.B. "Extremely short pulses in an anisotropic optical medium containing carbon nanotubes with metal conduction". Optics and Spectroscopy 130, nr 12 (2022): 1587. http://dx.doi.org/10.21883/eos.2022.12.55246.49-22.
Pełny tekst źródłaHIEU, NGUYEN NGOC, i NGUYEN PHAM QUYNH ANH. "ELECTRONIC BAND STRUCTURE OF CARBON NANOTUBES WITH QUINOID STRUCTURE". Modern Physics Letters B 27, nr 25 (23.09.2013): 1350179. http://dx.doi.org/10.1142/s0217984913501790.
Pełny tekst źródłaTang, Dai-Ming, Sergey V. Erohin, Dmitry G. Kvashnin, Victor A. Demin, Ovidiu Cretu, Song Jiang, Lili Zhang i in. "Semiconductor nanochannels in metallic carbon nanotubes by thermomechanical chirality alteration". Science 374, nr 6575 (24.12.2021): 1616–20. http://dx.doi.org/10.1126/science.abi8884.
Pełny tekst źródłaLee, Kyu Won, i Cheol Eui Lee. "Half-Metallic Carbon Nanotubes". Advanced Materials 24, nr 15 (15.03.2012): 2019–23. http://dx.doi.org/10.1002/adma.201200104.
Pełny tekst źródłaKhantimerov, S. M., E. F. Kukovitsky, N. A. Sainov i N. M. Suleimanov. "Fuel Cell Electrodes Based on Carbon Nanotube/Metallic Nanoparticles Hybrids Formed on Porous Stainless Steel Pellets". International Journal of Chemical Engineering 2013 (2013): 1–4. http://dx.doi.org/10.1155/2013/157098.
Pełny tekst źródłaZhao, Dong Lin, Xia Li, Wei Dong Chi i Zeng Min Shen. "Formation Mechanism and Microwave Permittivity of Carbon Nanotubes Filled with Metallic Silver Nanowires". Key Engineering Materials 334-335 (marzec 2007): 685–88. http://dx.doi.org/10.4028/www.scientific.net/kem.334-335.685.
Pełny tekst źródłaBajwa, Navdeep, Xuesong Li, Pulickel M. Ajayan i Robert Vajtai. "Mechanisms for Catalytic CVD Growth of Multiwalled Carbon Nanotubes". Journal of Nanoscience and Nanotechnology 8, nr 11 (1.11.2008): 6054–64. http://dx.doi.org/10.1166/jnn.2008.sw02.
Pełny tekst źródłaSingh, Rekha. "Transport Properties of Ordered and Disordered Doped Metallic Nanotubes". International Journal of Research in Engineering, Science and Management 3, nr 11 (8.11.2020): 40. http://dx.doi.org/10.47607/ijresm.2020.368.
Pełny tekst źródłaGayduchenko, Igor, Georgy Fedorov, Ramil Ibragimov, Tatiana Stepanova, Arsen Gazaliev, Nikolay Vysochanskiy, Yuri Bobrov, Anton Malovichko, Ilya Sosnin i Ivan Bobrinetskiy. "Synthesis of single-walled carbon nanotube networks using monodisperse metallic nanocatalysts encapsulated in reverse micelles". Chemical Industry 70, nr 1 (2016): 1–8. http://dx.doi.org/10.2298/hemind140910005g.
Pełny tekst źródłaДадашян, Л. Х., Р. Р. Трофимов, Н. Н. Конобеева i М. Б. Белоненко. "Предельно короткие импульсы в оптически анизотропной среде, содержащей углеродные нанотрубки с металлической проводимостью". Оптика и спектроскопия 130, nr 12 (2022): 1861. http://dx.doi.org/10.21883/os.2022.12.54092.49-22.
Pełny tekst źródłaRozprawy doktorskie na temat "METALLIC CARBON NANOTUBES"
Farhat, Hootan. "Raman spectroscopy of metallic carbon nanotubes". Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/59217.
Pełny tekst źródłaIncludes bibliographical references (p. 101-108).
Metallic carbon nanotubes are one dimensional conductors that are both technologically promising for electronic applications, and scientifically interesting for studying the physics of low dimensional materials. In this thesis, we present a detailed study of the inelastic light scattering (Raman) spectrum of individual metallic carbon nanotubes, with a focus on the influence of electronic excitations and charged carriers. We have demonstrated that the frequency and linewidth of certain phonon modes of metallic carbon nanotubes depend strongly the Fermi energy, because they couple strongly to low lying electron hole pairs. Next, we report the first experimental observation of electronic Raman scattering in carbon nanotubes. This observation demonstrates that the same electron-hole pairs that participate in damping the optical phonons of metallic carbon nanotubes, may themselves scatter light, thus giving rise to an electronic Raman spectrum. An analysis of the Fermi level and laser energy dependence of the electronic Raman and phonon Raman contributions allows us to explain the asymmetric lineshape of the G-band phonon modes in terms of a Fano interference. In another experiment, we have shown that the charge-induced expansion and contraction of the the graphitic C-C bond length is different for metallic and semiconducting nanotubes. Finally, we have measured the Stokes and antiStokes intensities of the Raman modes in electrically contacted metallic nanotubes in order to determine their phonon populations during high-field electrical transport. The experiments reported here, have helped to clarify the origin of several features in the Raman spectra of metallic carbon nanotubes that have been heavily debated in recent years. These result also shed light on the way electronic excitations and charged carriers affect the physical properties of metallic carbon nanotubes.
by Hootan Farhat.
Ph.D.
Rauf, Hendrik. "Metallic Ground State of Functionalized Carbon Nanotubes". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:swb:14-1184153423397-79783.
Pełny tekst źródłaRauf, Hendrik. "Metallic Ground State of Functionalized Carbon Nanotubes". Doctoral thesis, Technische Universität Dresden, 2006. https://tud.qucosa.de/id/qucosa%3A24959.
Pełny tekst źródłaHeight, Murray John 1975. "Flame synthesis of carbon nanotubes and metallic nanomaterials". Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/49807.
Pełny tekst źródłaIncludes bibliographical references.
Carbon nanotubes are a remarkable material with many appealing properties. Despite the appeal of this material, there are few synthesis techniques capable of producing nanotubes in large quantities at low-cost. The broad objective of this study was to examine the potential of a premixed flame for the synthesis of carbon nanotubes with the view that flame synthesis may prove a means of continuous production at low-cost. The specific approach focused on the formation of metallic nanoparticles in flames; identification of nanotube formation zones, time scales, and transition conditions; characterization of material properties; and the development of a formation mechanism and associated flame-model. Carbon nanotube formation requires a source of carbon, a source of heat and the presence of metal particles. A fuel-rich flame is a high-temperature, carbon-rich environment and addition of metal is likely to give conditions suitable for nanotube growth. This study considered a premixed acetylene/oxygen/15 mol% argon flame doped with iron pentacarbonyl (Fe(CO)₅) vapor (typically 6100 ppm), operated at 50 Torr pressure and 30 cm/s cold gas feed velocity. The flame was investigated with regard to the growth of metal particles and subsequent formation and growth of carbon nanotubes. Thermophoretic samples were extracted from the flame at various heights above burner (HAB) and analyzed using transmission electron microscopy (TEM). HAB is representative of residence time in the flame. Size distribution and number density data were extracted from TEM images using a quantitative image analysis technique. The mean particle size for a precursor concentration of 6100 ppm was observed to increase from around 2 to 4 nm between 20 and 75 mm HAB.
(cont.) The particle number density results showed a decreasing number density with increasing HAB, giving a complementary picture of the particle dynamics in the flame. Single-walled carbon nanotubes (SWNT) were also observed to form in the premixed flame. Thermophoretic sampling and TEM analysis gave insight into nanotube formation dynamics. Nanotube structures were observed to form as early as 30 mm HAB (20 ms) with growth proceeding rapidly within the next 10 to 20 mm HAB. The growth-rate for the nanotubes in this interval is estimated to be between 10 and 100 ptm per second. The upper region of the flame (50 to 70 mm HAB; 35 to 53 ms) is dominated by tangled web structures formed via the coalescence of individual nanotubes formed earlier in the flame. The nanotube structures are exclusively single-walled with no multi-walled nanotubes observed in any of the flame samples. The effect of carbon availability on nanotube formation was tested by collecting samples over a range of fuel equivalence ratios at fixed HAB. The morphology of the collected material revealed a nanotube formation 'window' of 1.5 < < 1.9, with lower dominated by discrete particles and higher favoring soot-like structures. These results were also verified using Raman spectroscopy. A clear trend of improved nanotube quality (number and length of nanotubes) is observed at lower . More filaments were observed with increasing concentration, however the length (and quality) of the nanotubes appeared higher at lower concentrations ...
by Murray John Height.
Ph.D.
Zienert, Andreas. "Electronic Transport in Metallic Carbon Nanotubes with Metal Contacts". Doctoral thesis, Universitätsbibliothek Chemnitz, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-108205.
Pełny tekst źródłaDie kontinuierliche Verkleinerung der Strukturgrößen stellt hohe Anforderungen an Materialen und Technologien zukünftiger hochintegrierter Schaltkreise. Insbesondere die Leistungsfähigkeit kupferbasierte Leitbahnsystem wird bald an fundamentale Grenzen stoßen. Aufgrund ihrer hervorragenden Eigenschaften könnten metallische Kohlenstoffnanoröhren (engl. Carbon Nanotubes, CNTs) Kupfer in zukünftigen Leitbahnsystemen teilweise ersetzen. Dabei ist ein geringer Kontaktwiderstand mit vorhandenen Leitbahnen von entscheidender Bedeutung. Die vorliegende Arbeit liefert grundlegende Beiträge zur Theorie und zur numerischen Beschreibung elektronischer Transporteigenschaften metallischer CNTs mit Metallkontakten. Dazu werden verschiedene theoretische Ansätze auf diverse Kontaktmodelle angewandt und eine Auswahl von Elektrodenmaterialen (Al, Cu, Pd, Ag, Pt, Au) verglichen. Die Beschreibung ballistischen Elektronentransports erfolgt mittels des Formalismus der Nichtgleichgewichts-Green-Funktionen in Kombination mit Tight-Binding (TB), erweiterter Hückel-Theorie (EHT) und Dichtefunktionaltheorie (DFT). Vereinfachte Kontaktmodelle dienen der qualitativen Untersuchung des Einflusses von Geometrie und Länge der Nanoröhren, sowie von Stärke und Ausdehnung des Kontaktes. Darüber hinaus erlauben solch einfache Modelle mit geringem numerischen Aufwand den Einfluss verschiedener Elektronenstrukturmethoden zu untersuchen. Es zeigt sich, dass die semiempirischen Methoden TB und EHT nicht in der Lage sind die Ergebnisse der DFT quantitativ zu reproduzieren. Ausgehend von diesen Ergebnissen wird ein verbesserter Satz von Hückel-Parametern generiert, der diesen Mangel behebt. Die Untersuchung verschiedener Kontaktmaterialien erfolgt an wohldefinierten atomistischen Metall-CNT-Metall-Strukturen, welche systematisch optimiert werden. Analytische Modelle zur Beschreibung der CNT-Metall-Wechselwirkung werden vorgeschlagen. Darauf aufbauende Berechnungen der elektronischen Transporteigenschaften, können mit Hilfe der verbesserten EHT auf große Systeme ausgedehnt werden. Die Ergebnisse ermöglichen eine Reihung der Metall-CNT-Metall-Systeme hinsichtlich ihrer Leitfähigkeit: Ag ≤ Au < Cu < Pt ≤ Pd < Al. Dies korrespondiert qualitativ mit berechneten Kontaktabständen, Bindungsenergien und Austrittarbeiten der CNTs und Metalle. Zum tieferen Verständnis der Transporteigenschaften erfolgt eine detaillierte Analyse der elektronischen Struktur der Metall-CNT-Metall-Systeme und ihrer Teilsysteme. Dabei erweist sich die energieaufgelöste lokale Zustandsdichte als nützliches Werkzeug zur Visulisierung und zur Charakterisierung der Wechselwirkung zwischen CNT und Metall sowie deren Einfluss auf den Transport
Lewis, Peter. "Investigations into hybrids of carbon nanotubes and organo-metallic molecular systems". Thesis, University of Bath, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.642027.
Pełny tekst źródłaNasuhoglu, Deniz. "Synthesis of carbon nanotubes on metallic grids for applications in electrochemical capacitors". Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112580.
Pełny tekst źródłaCarbon nanotubes (CNTs), discovered by Iijima in 1991, attracted great attention in recent years for their unique properties, such as mesoporous character, excellent conductivity, moderate to high specific surface area as well as chemical and mechanical stability. These properties of CNTs make them useful in a wide of range applications including electrode materials for EC applications.
The preparation of CNT electrodes is accomplished by either pasting them onto metallic current collectors with the use of binder materials such as PVDF or growing them from deposited metal nanoparticles on substrates such as graphite paper. The deposition of metal nanoparticles is achieved via sputtering techniques or lengthy electrochemical deposition methods. The aim of this research was to simplify the preparation step by growing CNTs directly on metallic substrates and to study the relationship between surface area and electrochemical capacitance of CNTs. CNTs were produced on metal-alloy grids via chemical vapor deposition (CVD) of acetylene (C2H2). The physical characterization of the samples was achieved by Field Emission Scanning Electron Microscopy (FE-SEM), Raman spectroscopy and Single point BET surface area. The electrochemical performance of the samples was evaluated by cyclic voltammetry (CV) in a three electrode electrochemical cell with 1M sulfuric acid (H2SO4) solution as the electrolyte.
Villalpando, Páez Federico. "Raman spectroscopy of double walled carbon nanotubes with different metallic and semiconducting configurations". Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/59238.
Pełny tekst źródłaIncludes bibliographical references (p. 117-125).
A double-walled carbon nanotube (DWNT) provides the simplest system to study the interaction between concentric tubes in carbon nanotubes. The inner and outer walls of a DWNT can be metallic (M) or semiconducting (S), and each of the four possible configurations (MUM, M©S, SUS, S©M) has different electronic properties. We analyze the Raman spectra from undoped and boron-doped chemical vapor deposition-derived DWNT bundles (CVD-DWNTs) that exhibit the "coalescence inducing mode" (CIM) as they are heat treated at temperatures between 12000C and 2000'C. We then report, for the first time, detailed Raman spectroscopy experiments carried out on individual DWNTs, where both concentric tubes of the same DWNT are measured under resonance conditions. A technique is developed that combines tunable Raman spectroscopy with Raman mapping procedures and electron beam lithography to enable the acquisition of Raman spectra from the individual constituents of the same isolated DWNT. By using the technique mentioned above, we measure resonant Raman scattering from 11 individual C60-derived double wall carbon nanotubes all having inner semiconducting (6,5) tubes and various outer metallic tubes. We report that in an individual DWNT an increase in the RBM frequency of the inner tube is related to an increase in the RBM frequency of the outer tube due to a decrease in the wall to wall distance. Finally, we use 40 laser excitation energies to analyze the differences in the Raman spectra from chemical vapor deposition-derived DWNT bundles (CVD-DWNTs), fullerene-derived DWNT bundles (C₆₀-DWNTs) and individual fullerene-derived DWNTs with inner type I and type II semiconducting tubes paired with outer metallic tubes.
by Federico Villalpando Páez.
Ph.D.
Conturbia, Giovanni de Lima Cabral. "Celulas solares baseadas em nanotubos de carbono modificado e nanoparticulas de ouro". [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/250676.
Pełny tekst źródłaDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Quimica
Made available in DSpace on 2018-08-14T13:13:51Z (GMT). No. of bitstreams: 1 Conturbia_GiovannideLimaCabral_M.pdf: 7472586 bytes, checksum: 9ede857037431127443d2bed95bd1ccc (MD5) Previous issue date: 2009
Resumo:Células solares orgânicas têm despertado atenções devido ao baixo custo de produção e dos materiais utilizados, bem como devido à versatilidade química e de propriedades eletrônicas e ópticas dos semicondutores orgânicos. A eficiência atual atinge 5% (100 mWcm). Nanotubos de carbono encontram suas aplicações nessas células ora como eletrodos transparentes ora como material receptor de elétrons. Nesse trabalho, foi realizada a modificação química de nanotubos de carbono de única camada com grupos tióis, visando a incorporação de nanopartículas metálicas ou semicondutoras. O material de partida, bem como os nanotubos modificados, foi caracterizado por Espectroscopia Raman, Espectroscopia de Fotoelétron por Raios-X, Análise Térmica e Microscopia Eletrônica de Transmissão de Alta Resolução. Foi necessário um pós-tratamento (térmico e lavagens com diversos solventes) para que pudéssemos obter nanotubos individuais e funcionalizados. O pós-tratamento também possibilitou um aumento na fotocorrente dos dispositivos em comparação com o dispositivo sem nanotubos de carbono. A incorporação de nanopartículas de ouro no sistema P3HT/fulereno acresceu a fotocorrente e o fator de preenchimento dos dispositivos. Estudos de caracterização através de difração de raios-X, espectroscopia UV-visível e microscopia de força atômica, indicam que esse aumento está relacionado a uma mudança na morfologia do sistema, aumentando a cristalinidade do polímero e também ao efeito plasmônico com a adição das nanopartículas. Imagens de microscopia eletrônica de transmissão revelaram que as nanopartículas de ouro estão distribuídas tanto na fase polimérica quanto na fase contendo moléculas de fulereno
Abstract: Organic solar cells have attracted attention due to their low costs of production and materials used, as well as the chemical versatility and good electronic and optical properties of organic semiconductors. The current efficiency reaches 5% (100 mWcm). Carbon nanotubes materials can be applied in these cells as both transparent electrode or as electron acceptor materials. In this work, the chemical modification of single wall carbon nanotubes was carried out attaching thiol groups, aiming the incorporation of semiconductor or metallic nanoparticles. The raw material and the modified nanotubes were characterized by Raman Spectroscopy, X-ray Photoelectron Spectroscopy, Thermal Analysis and High Resolution Transmission Electron Microscopy. A post-treatment (thermal and washing with different solvents) was necessary in order to obtain single functionalized nanotubes. The post-treatment also allowed an increase in the photocurrent of the devices compared to the device without carbon nanotubes. The incorporation of gold nanoparticles in the P3HT/fullerene system increased the photocurrent and the fill factor of the devices. X-Ray diffraction, UV-vis Spectroscopy and Atomic Force Microscopy studies reveal that such increase can be related to the plasmonic effect and also to a change in the morphology, increasing polymer crystallinity after incorporation of the gold nanoparticles. High resolution transmission microscopy images showed that the nanoparticles are distributed between both polymer and fullerene phase.
Mestrado
Físico-Química
Mestre em Química
Luo, Weiqi. "Atomistic Materials Modeling of Complex Systems: Carbynes, Carbon Nanotube Devices and Bulk Metallic Glasses". Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1218567734.
Pełny tekst źródłaKsiążki na temat "METALLIC CARBON NANOTUBES"
Rao, Bakshi Srinivasa, i Lahiri Debrupa, red. Carbon nanotubes: Reinforced metal matrix composites. Boca Raton: CRC Press, 2011.
Znajdź pełny tekst źródłaAgarwal, Arvind, Srinivasa Rao Bakshi, Debrupa Lahiri, Andy Nieto i Ankita Bisht. Carbon Nanotubes. Taylor & Francis Group, 2021.
Znajdź pełny tekst źródłaAgarwal, Arvind, Srinivasa Rao Bakshi i Debrupa Lahiri. Carbon Nanotubes. Taylor & Francis Group, 2010.
Znajdź pełny tekst źródłaKamarás, Katalin, i Àron Pekker. Identification and separation of metallic and semiconducting carbon nanotubes. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.4.
Pełny tekst źródłaZhang, Lianchi. Carbon Nanotubes and Their Composites: Properties, Mechanics and Engineering Applications. Elsevier Science & Technology Books, 2019.
Znajdź pełny tekst źródłaAgarwal, Arvind, Srinivasa Rao Bakshi, Debrupa Lahiri, Andy Nieto i Ankita Bisht. Carbon Nanotubes: Reinforced Metal Matrix Composites. Taylor & Francis Group, 2021.
Znajdź pełny tekst źródłaCarbon Nanotubes: Reinforced Metal Matrix Composites. Taylor & Francis Group, 2021.
Znajdź pełny tekst źródłaAgarwal, Arvind, Srinivasa Rao Bakshi i Debrupa Lahiri. Carbon Nanotubes: Reinforced Metal Matrix Composites. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaAgarwal, Arvind, Srinivasa Rao Bakshi i Debrupa Lahiri. Carbon Nanotubes: Reinforced Metal Matrix Composites. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaAgarwal, Arvind, Srinivasa Rao Bakshi i Debrupa Lahiri. Carbon Nanotubes: Reinforced Metal Matrix Composites. Taylor & Francis Group, 2018.
Znajdź pełny tekst źródłaCzęści książek na temat "METALLIC CARBON NANOTUBES"
Smalley, R. E. "Crystalline Ropes of Metallic Carbon Nanotubes". W Supercarbon, 31–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03569-6_3.
Pełny tekst źródłaEgger, R., A. Bachtold, M. S. Fuhrer, M. Bockrath, D. H. Cobden i P. L. McEuen. "Luttinger Liquid Behavior in Metallic Carbon Nanotubes". W Lecture Notes in Physics, 125–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45532-9_7.
Pełny tekst źródłaThomas, B. J. C., M. S. P. Shaffer, Sarah Freeman, M. Koopman, Krish K. Chawla i Aldo R. Boccaccini. "Electrophoretic Deposition of Carbon Nanotubes on Metallic Surfaces". W Electrophoretic Deposition: Fundamentals and Applications II, 141–46. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-998-9.141.
Pełny tekst źródłaKuroda, Marcelo A., i Jean-Pierre Leburton. "High-Field Electrothermal Transport in Metallic Carbon Nanotubes". W Physical Models for Quantum Wires, Nanotubes, and Nanoribbons, 353–78. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003219378-29.
Pełny tekst źródłaAnderson, Ankoma, Fushen Lu*, Mohammed J. Meziani* i Ya-Ping Sun*. "Chapter 6. Metallic Single-walled Carbon Nanotubes for Electrically Conductive Materials and Devices". W Carbon Nanotube-Polymer Composites, 182–211. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849736817-00182.
Pełny tekst źródłaZeng, Hui, Jean-Pierre Leburton, Huifang Hu i Jianwei Wei. "Vacancy Cluster–Limited Electronic Transport in Metallic Carbon Nanotubes". W Physical Models for Quantum Wires, Nanotubes, and Nanoribbons, 407–16. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003219378-32.
Pełny tekst źródłaKuroda, Marcelo A., Andreas Cangellaris i Jean-Pierre Leburton. "Nonlinear Transport and Heat Dissipation in Metallic Carbon Nanotubes". W Physical Models for Quantum Wires, Nanotubes, and Nanoribbons, 319–29. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003219378-26.
Pełny tekst źródłaHarigaya, Kikuo. "Impurity scattering in metallic carbon nanotubes with superconducting pairs". W Springer Proceedings in Physics, 156–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_67.
Pełny tekst źródłaEdtmaier, C., T. Janhsen, R. C. Hula, Laurent Pambaguian, Hans Georg Wulz, Stefan Forero i F. Hepp. "Carbon Nanotubes as Highly Conductive Nano-Fillers in Metallic Matrices". W Advanced Materials Research, 131–37. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908454-01-8.131.
Pełny tekst źródłaKuroda, Marcelo A., i Jean-Pierre Leburton. "Joule Heating Induced Negative Differential Resistance in Freestanding Metallic Carbon Nanotubes". W Physical Models for Quantum Wires, Nanotubes, and Nanoribbons, 331–39. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003219378-27.
Pełny tekst źródłaStreszczenia konferencji na temat "METALLIC CARBON NANOTUBES"
Pozdnyakov, D. V. "Magnetoresistance of metallic single-wall carbon nanotubes". W 2010 20th International Crimean Conference "Microwave & Telecommunication Technology" (CriMiCo 2010). IEEE, 2010. http://dx.doi.org/10.1109/crmico.2010.5632953.
Pełny tekst źródłaYonezawa, Norifumi, i Hidekatsu Suzuura. "Strain-induced localization in metallic carbon nanotubes". W PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2730251.
Pełny tekst źródłaAl Ahmad, Mahmoud, Abbes Tahraoui, W. I. Milne i Robert Plana. "Metallic multiwalled carbon nanotubes for microwave applications". W 2007 International Semiconductor Device Research Symposium. IEEE, 2007. http://dx.doi.org/10.1109/isdrs.2007.4422424.
Pełny tekst źródłaLee, Hyung Woo, Soo Hyun Kim, Yoon Keun Kwak i Chang Soo Han. "A New Method for a Single Semi-Conducting Nanotube Device". W ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61602.
Pełny tekst źródłaGuo, Kun, i Ahalapitiya H. Jayatissa. "Growth of Carbon Nanotubes on Metallic Catalyst by CVD". W ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15356.
Pełny tekst źródłaHuang, Xue Ming Henry, Robert Caldwell, Bhupesh Chandra, Seong Chan Jun, Mingyuan Huang i James Hone. "Controlled Manipulation of Carbon Nanotubes for Nanodevices, Arrays, and Films". W ASME 4th Integrated Nanosystems Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/nano2005-87033.
Pełny tekst źródłaMahjouri-Samani, M., Y. S. Zhou, W. Xiong, Y. Gao, M. Mitchell i Y. F. Lu. "Laser-assisted selective removal of metallic carbon nanotubes". W ICALEO® 2009: 28th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2009. http://dx.doi.org/10.2351/1.5061502.
Pełny tekst źródłaYang Wu, Janina Maultzsch, Ernst Knoesel, Bhupesh Chandra, Mingyuan Huang, Matthew Y. Sfeir, Louis E. Brus, James Hone i Tony F. Heinz. "Raman scattering from individual, isolated metallic carbon nanotubes". W 2007 Quantum Electronics and Laser Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/qels.2007.4431776.
Pełny tekst źródłaWalker, Don, Colin J. Mann, John C. Nocerino i Simon H. Liu. "Proton irradiation of metallic single-walled carbon nanotubes". W 2011 37th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2011. http://dx.doi.org/10.1109/pvsc.2011.6186268.
Pełny tekst źródłaDoome, R. J., A. Fonseca i J. B. Nagy. "New metallic alloys incorporating fullerenes and carbon nanotubes". W The 12th international winterschool on electronic properties of novel materials: progress in molecular nanostructures. AIP, 1998. http://dx.doi.org/10.1063/1.56440.
Pełny tekst źródłaRaporty organizacyjne na temat "METALLIC CARBON NANOTUBES"
Brus, Louis E. Metallic Carbon Nanotubes and Ag Nanocrystals. Office of Scientific and Technical Information (OSTI), marzec 2014. http://dx.doi.org/10.2172/1121887.
Pełny tekst źródłaSun, Ya-Ping. Quantitative Separation of Single-Walled Carbon Nanotubes into Metallic and Semiconducting Fractions. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2012. http://dx.doi.org/10.21236/ada581369.
Pełny tekst źródła