Gotowa bibliografia na temat „METALLIC AND INORGANIC”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „METALLIC AND INORGANIC”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "METALLIC AND INORGANIC"
"Non-metallic inorganic". Materials and Corrosion/Werkstoffe und Korrosion 44, nr 7 (lipiec 1993): R183. http://dx.doi.org/10.1002/maco.19930440716.
Pełny tekst źródła"Non-metallic inorganic materials". Materials and Corrosion/Werkstoffe und Korrosion 41, nr 5 (maj 1990): R128—R129. http://dx.doi.org/10.1002/maco.19900410519.
Pełny tekst źródła"Non-metallic inorganic coatings". Materials and Corrosion/Werkstoffe und Korrosion 41, nr 5 (maj 1990): R132—R134. http://dx.doi.org/10.1002/maco.19900410522.
Pełny tekst źródła"Non-metallic inorganic materials". Materials and Corrosion/Werkstoffe und Korrosion 41, nr 6 (czerwiec 1990): R150—R151. http://dx.doi.org/10.1002/maco.19900410615.
Pełny tekst źródła"Non-metallic inorganic coatings". Materials and Corrosion/Werkstoffe und Korrosion 41, nr 6 (czerwiec 1990): R152. http://dx.doi.org/10.1002/maco.19900410618.
Pełny tekst źródła"Non-metallic inorganic materials". Materials and Corrosion/Werkstoffe und Korrosion 41, nr 7 (lipiec 1990): R170. http://dx.doi.org/10.1002/maco.19900410713.
Pełny tekst źródła"Non-metallic inorganic coatings". Materials and Corrosion/Werkstoffe und Korrosion 41, nr 7 (lipiec 1990): R171—R172. http://dx.doi.org/10.1002/maco.19900410715.
Pełny tekst źródła"Non-metallic inorganic materials". Materials and Corrosion/Werkstoffe und Korrosion 41, nr 8 (sierpień 1990): R194. http://dx.doi.org/10.1002/maco.19900410817.
Pełny tekst źródła"Non-metallic inorganic coatings". Materials and Corrosion/Werkstoffe und Korrosion 41, nr 8 (sierpień 1990): R195—R196. http://dx.doi.org/10.1002/maco.19900410820.
Pełny tekst źródła"Non-metallic inorganic materials". Materials and Corrosion/Werkstoffe und Korrosion 41, nr 9 (wrzesień 1990): R214—R215. http://dx.doi.org/10.1002/maco.19900410916.
Pełny tekst źródłaRozprawy doktorskie na temat "METALLIC AND INORGANIC"
To, Theany. "Fracture toughness and fracture surface energy of inorganic and non-metallic glasses". Thesis, Rennes 1, 2019. http://www.theses.fr/2019REN1S013/document.
Pełny tekst źródłaFracture toughness and fracture surface energy of commercial and laboratory glasses, glass-ceramics and glass matrix composites have been studied. First, bi-axial bending test (RoR configuration) was performed on fused silica and window float glasses with different surface conditions to identify the relationship between the surface flaw, the strength and fracture toughness. After, three experiment methods, mainly single-edge precracked beam (SEPB), chevron-notched beam (CNB) and Vickers indentation fracture (VIF) were performed to determine the fracture toughness of four commercial known glasses and to determine the advantages and inconveniences of the different selected methods. The method that is appeared as the most reliable and self-consistent, the SEPB (Single Edge Precrack Beam) method, was applied to determine the toughness of the large amount of glasses and glass-ceramics, to study the influence of the composition and the microstructure on the characteristics of cracking (KIC and fracture energy, γ). Last but not least, the influence of the temperature and environment on the fracture toughness was studied by means of the SEPB method. Two oxide glasses were tested in elevated temperatures and with the loading rate of 10 MPa∙√m/s, a transition temperature of 1.11Tg was found. Four other oxide glasses were tested in the inert environment and the same fracture toughness values were obtained from (100 times) two different cross-head speeds
Smith, Sarah. "Synthesis and Characterization of Metallic Nanoparticles for Catalytic Applications". VCU Scholars Compass, 2017. http://scholarscompass.vcu.edu/etd/4803.
Pełny tekst źródłaVeitch, Paul M. "A study of organo-metallic compounds containing transition and main group elements with mixed and thio ligands". Thesis, Edinburgh Napier University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.328837.
Pełny tekst źródłaBrennan, Daniel P. "Small molecule and polymer templating of inorganic materials". Diss., Online access via UMI:, 2006.
Znajdź pełny tekst źródłaHan, Qi. "Chemically modified electrodes with inorganic films of noble metal complexes and metal oxides : preparation, characterization and applications /". View Abstract or Full-Text, 2002. http://library.ust.hk/cgi/db/thesis.pl?CHEM%202002%20HAN.
Pełny tekst źródłaDi, Pietro Patrizia. "Hybrid organic-inorganic nanomaterials for applications at the biointerfaces". Doctoral thesis, Università di Catania, 2017. http://hdl.handle.net/10761/3843.
Pełny tekst źródłaMatencio, Lloberas Sonia. "An STM/FM-AFM investigation of selected organic and inorganic 2D systems on metallic surfaces". Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/347213.
Pełny tekst źródłaEn los dispositivos basados en semiconductores, las interfases entre material metálico y material semiconductor juegan un papel importante en el funcionamiento final de dichos dispositivos. Algunos ejemplos de dispositivos son las celdas solares, los diodos emisores de luz y los transistores de efecto campo. En las interfases metal/semiconductor se producen muchos de los procesos fundamentales para el correcto funcionamiento de éstos, como la inyección de carga o la separación de excitones. La optimización de dichos procesos requiere un sólido conocimiento a nivel atómico de las interfases desde un punto de vista estructural y electrónico. Por consiguiente, en esta tesis se han estudiado una serie de sistemas bidimensionales orgánicos e inorgánicos crecidos sobre diferentes superficies metálicas mediante microscopía de sonda próxima, una de las técnicas más potentes en el campo de la nanotecnología. Concretamente se ha utilizado un microscopio combinado de efecto túnel (STM) y de fuerzas atómicas (AFM), en condiciones de ultra alto vacío y a temperatura ambiente. Capas delgadas de óxido de cobre (Cu2O) han sido ampliamente utilizadas por sus óptimas propiedades en catálisis y como material semiconductor en celdas solares. Con el fin de estudiar las propiedades estructurales y electrónicas, se han crecido capas ultra delgadas (un átomo de grosor) de Cu2O sobre una superficie de cobre (111). Diferentes técnicas han sido utilizadas para su caracterización estructural y electrónica. Por otro lado, otro de los materiales semiconductores utilizados en el desarrollo de futuras celdas solares son capas finas formadas por moléculas orgánicas semiconductoras. A pesar de que se podrían utilizar muchas moléculas para la fabricación de dispositivos orgánicos, las moléculas pequeñas conjugadas son especialmente interesantes debido al bajo peso molecular, su estabilidad ante la polimerización y ante la descomposición térmica. Dichas moléculas pueden ser sublimadas en condiciones de ultra alto vacío mediante crecimiento epitaxial por haces de moléculas orgánicas. En el transcurso de esta tesis, varias moléculas orgánicas han sido crecidas sobre diferentes superficies metálicas: perileno tetracarboxílico dianhídrido (PTCDA), diindenoperileno (DIP) y ftalocianina de cloro y aluminio (ClAlPc). Su caracterización estructural y la medida e interpretación de la función de trabajo local se han presentado en esta tesis.
Gao, Xiaonan. "Sol-Gel Assembly of Metal Nanostructures into Metallic Gel Frameworks and Their Applications". VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4319.
Pełny tekst źródłaPeterson, Alisha D. "Synthesis and Characterization of Novel Nanomaterials: Gold Nanoshells with Organic- Inorganic Hybrid Cores". Scholar Commons, 2010. http://scholarcommons.usf.edu/etd/3612.
Pełny tekst źródłaYucelen, Gulfem Ipek. "Formation and growth mechanisms of single-walled metal oxide nanotubes". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44796.
Pełny tekst źródłaKsiążki na temat "METALLIC AND INORGANIC"
Kijima, Tsuyoshi, red. Inorganic and Metallic Nanotubular Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-03622-4.
Pełny tekst źródłaSetsuhara, Yuichi, Toshio Kamiya i Shin-ichi Yamaura, red. Novel Structured Metallic and Inorganic Materials. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7611-5.
Pełny tekst źródłaHarding, WB, i GA Di Bari, red. Testing of Metallic and Inorganic Coatings. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1987. http://dx.doi.org/10.1520/stp947-eb.
Pełny tekst źródłaInnovative Inorganic Composites Symposium (1990 Detroit, Mich.). Innovative inorganic composites. Redaktorzy Fishman Steven G, Abbaschian R, Cornie James A i ASM's Materials Week (1990 : Detroit, Mich.). London: Elsevier Applied Science, 1991.
Znajdź pełny tekst źródłaInorganic and metallic nanotubular materials: Recent technologies and applications. Heidelberg: Springer, 2009.
Znajdź pełny tekst źródłaGranqvist, Claes G. Handbook of inorganic electrochromic materials. Amsterdam: Elsevier, 1995.
Znajdź pełny tekst źródłaB, Harding William, Di Bari George A, ASTM Committee B-8 on Metallic and Inorganic Coatings. i Symposium on Testing of Metallic and Inorganic Coatings (1986 : Chicago, Ill.), red. Testing of metallic and inorganic coatings: A symposium sponsored by ASTM Committee B-8 on Metallic and Inorganic Coatings, Chicago, IL, 14-15 April 1986. Philadelphia, PA: ASTM, 1987.
Znajdź pełny tekst źródłaBurzo, E. Magnetic Properties of Non-Metallic Inorganic Compounds Based on Transition Elements. Redaktor H. P. J. Wijn. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49337-3.
Pełny tekst źródłaAdaskin, Anatoliy, Aleksandr Krasnovskiy i Tat'yana Tarasova. Materials science and technology of metallic, non-metallic and composite materials. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1143245.
Pełny tekst źródłaK, Surappa M., Jawarharlal Nehru Centre for Advanced Scientific Research. i Minerals, Metals and Materials Society. Structural Materials Division., red. Inorganic matrix composites: Proceedings of the discussion meeting sponsored by Jawarharlal Nehru Center for Advanced Scientific Research and the Structural Materials Division of TMS, held at the Indian Institute of Science, Bangalore, India, March 8-11, 1995. Warrendale, Pa: Minerals, Metals & Materials Society, 1996.
Znajdź pełny tekst źródłaCzęści książek na temat "METALLIC AND INORGANIC"
Hurd, Loren C., Eugene Brimm, W. A. Taebel i B. S. Hopkins. "Metallic Rhenium". W Inorganic Syntheses, 175–78. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470132326.ch60.
Pełny tekst źródłaDevi, Laxmi, Tarique Mahmood Ansari, Md Sabir Alam, Ashish Kumar i Poonam Kushwaha. "Metallic (Inorganic) Nanoparticles". W Metallic Nanoparticles for Health and the Environment, 1–21. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003317319-1.
Pełny tekst źródłaHonig, J. M., i H. R. Harrison. "Metallic Oxides". W Inorganic Reactions and Methods, 245. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145333.ch178.
Pełny tekst źródłaHonig, J. M., i H. R. Harrison. "Metallic Carbides". W Inorganic Reactions and Methods, 250–51. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145333.ch181.
Pełny tekst źródłaHonig, J. M., i H. R. Harrison. "Metallic Nitrides". W Inorganic Reactions and Methods, 254. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145333.ch183.
Pełny tekst źródłaDräger, M., i N. Kleiner. "In Metallic Lead". W Inorganic Reactions and Methods, 96–97. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145234.ch62.
Pełny tekst źródłaKnight, W. D. "Metallic free clusters". W Small Particles and Inorganic Clusters, 315–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74913-1_72.
Pełny tekst źródłaHonig, J. M., i H. R. Harrison. "Preparation of Metallic Ceramics". W Inorganic Reactions and Methods, 243–44. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145333.ch177.
Pełny tekst źródłaGötze, Jens, i Matthias Göbbels. "Inorganic Non-metallic Raw Materials". W Introduction to Applied Mineralogy, 23–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-64867-4_3.
Pełny tekst źródłaDeacon, Glen B., Geoff N. Pain, Tran D. Tuong, William J. Evans, Keith R. Levan i Raul Dominguez. "(η5 -Cyclopentadienyl)Lanthanide complexes from the metallic elements". W Inorganic Syntheses, 17–23. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470132579.ch5.
Pełny tekst źródłaStreszczenia konferencji na temat "METALLIC AND INORGANIC"
Tallant, D. R., K. L. Higgins, P. J. Hargis i A. F. Stewart. "Raman Analysis of Inorganic Thin Films*". W Lasers in Material Diagnostics. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/lmd.1987.wa3.
Pełny tekst źródłaSharma, Ankur, i Satish Kumar Dewangan. "Performance analysis of different phase change materials (organic, inorganic, and metallic) for building applications". W APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0127890.
Pełny tekst źródłaKani, Yuko, Kenji Noshita, Toru Kawasaki, Tsutomu Nishimura, Tomofumi Sakuragi i Hidekazu Asano. "Radiolytic Decomposition of Organic C-14 Released From TRU Waste". W The 11th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2007. http://dx.doi.org/10.1115/icem2007-7147.
Pełny tekst źródłaLi, Xiaobo, Hengzhi Wang, Hui Wang, Sohae Kim, Keivan Esfarjani, Zhifeng Ren i Gang Chen. "Metallic Composites Phase-Change Materials for High-Temperature Thermal Energy Storage". W ASME 2013 7th International Conference on Energy Sustainability collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/es2013-18395.
Pełny tekst źródłaKhoda, Bashir, A. M. M. Nazmul Ahsan i S. M. Naser Shovon. "Solid Transfer of Large Particles by Dipping in a Heterogeneous Mixture". W ASME 2021 16th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/msec2021-64079.
Pełny tekst źródłaJan, Zala, Veno Kononenko, Matej Hočevar, Damjana Drobne, Drago Dolinar, Boštjan Kocjančič, Monika Jenko i Veronika Kralj - Iglič. "Scanning Electron Microscope Images of HUVEC Cells Treated with Materials Used for Processing of Orthopaedic and Dental Implants". W Socratic Lectures 7. University of Lubljana Press, 2022. http://dx.doi.org/10.55295/psl.2022.d14.
Pełny tekst źródłaChang, Bing, Saisai Li, Minghui Li i Ruoyu Chen. "Research Progress of Neutron Shielding Materials". W 2022 29th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icone29-92210.
Pełny tekst źródłaKindred, Thomas A., i Richard F. Wright. "Effects of Aging on the Thermal Conductivity of the AP1000® Containment Vessel Inorganic Zinc Coating". W 2014 22nd International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icone22-31157.
Pełny tekst źródłaOkuno, Tsuyoshi, Koichiro Tanaka i Tohru Suemoto. "The role of divalent ions in persistent hole-burning mechanism in Y2O3:Pr3+ crystals". W Spectral Hole-Burning and Related Spectroscopies: Science and Applications. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/shbs.1994.wd55.
Pełny tekst źródłaZhou, D., i C. Y. Zhao. "Solid/Liquid Phase Change Heat Transfer in Latent Heat Thermal Energy Storage". W ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90052.
Pełny tekst źródła