Artykuły w czasopismach na temat „Metal-support interactions”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Metal-support interactions.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Metal-support interactions”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Tauster, S. J. "Strong metal-support interactions". Accounts of Chemical Research 20, nr 11 (listopad 1987): 389–94. http://dx.doi.org/10.1021/ar00143a001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

BURCH, R. "Metal sulfide-support interactions". Journal of Catalysis 97, nr 2 (luty 1986): 385–89. http://dx.doi.org/10.1016/0021-9517(86)90010-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Du, Xiaorui, Hailian Tang i Botao Qiao. "Oxidative Strong Metal–Support Interactions". Catalysts 11, nr 8 (25.07.2021): 896. http://dx.doi.org/10.3390/catal11080896.

Pełny tekst źródła
Streszczenie:
The discoveries and development of the oxidative strong metal–support interaction (OMSI) phenomena in recent years not only promote new and deeper understanding of strong metal–support interaction (SMSI) but also open an alternative way to develop supported heterogeneous catalysts with better performance. In this review, the brief history as well as the definition of OMSI and its difference from classical SMSI are described. The identification of OMSI and the corresponding characterization methods are expounded. Furthermore, the application of OMSI in enhancing catalyst performance, and the influence of OMSI in inspiring discoveries of new types of SMSI are discussed. Finally, a brief summary is presented and some prospects are proposed.
Style APA, Harvard, Vancouver, ISO itp.
4

del Arco, M., i V. Rives. "Metal-support and metal oxide-support interactions in Cu/TiO2". Reaction Kinetics and Catalysis Letters 31, nr 1 (marzec 1986): 239–44. http://dx.doi.org/10.1007/bf02062539.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Guenin, M., P. N. Da Silva i R. Frety. "Influence of chlorine towards metal-support and metal-sulphur support interactions". Applied Catalysis 27, nr 2 (styczeń 1986): 313–23. http://dx.doi.org/10.1016/s0166-9834(00)82927-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Douidah, A., P. Marécot, S. Szabo i J. Barbier. "Evaluation of the metal–support interactions". Applied Catalysis A: General 225, nr 1-2 (luty 2002): 21–31. http://dx.doi.org/10.1016/s0926-860x(01)00627-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Nicole, J., D. Tsiplakides, C. Pliangos, X. E. Verykios, Ch Comninellis i C. G. Vayenas. "Electrochemical Promotion and Metal–Support Interactions". Journal of Catalysis 204, nr 1 (listopad 2001): 23–34. http://dx.doi.org/10.1006/jcat.2001.3360.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

BADYAL, J. P. S. "ChemInform Abstract: Strong Metal-Support Interactions". ChemInform 25, nr 2 (19.08.2010): no. http://dx.doi.org/10.1002/chin.199402301.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Li, Yangyang, Yunshang Zhang, Kun Qian i Weixin Huang. "Metal–Support Interactions in Metal/Oxide Catalysts and Oxide–Metal Interactions in Oxide/Metal Inverse Catalysts". ACS Catalysis 12, nr 2 (6.01.2022): 1268–87. http://dx.doi.org/10.1021/acscatal.1c04854.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Okamoto, Yasuaki, Takeshi Kubota, Yoshiharu Ohto i Saburo Nasu. "Metal Oxide−Support Interactions in Fe/ZrO2Catalysts". Journal of Physical Chemistry B 104, nr 35 (wrzesień 2000): 8462–70. http://dx.doi.org/10.1021/jp994122t.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Huang, Yuhui, Rui Zou, Yanjun Lin i Chao Lu. "Electronic Metal–Support Interactions for Electrochemiluminescence Signal Amplification". Analytical Chemistry 93, nr 32 (4.08.2021): 11291–97. http://dx.doi.org/10.1021/acs.analchem.1c02423.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Linsmeier, Ch, i E. Taglauer. "Strong metal–support interactions on rhodium model catalysts". Applied Catalysis A: General 391, nr 1-2 (styczeń 2011): 175–86. http://dx.doi.org/10.1016/j.apcata.2010.07.051.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Fujiwara, Kakeru, Kikuo Okuyama i Sotiris E. Pratsinis. "Metal–support interactions in catalysts for environmental remediation". Environmental Science: Nano 4, nr 11 (2017): 2076–92. http://dx.doi.org/10.1039/c7en00678k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Hu, Pingping, Zhiwei Huang, Zakariae Amghouz, Michiel Makkee, Fei Xu, Freek Kapteijn, Alla Dikhtiarenko, Yaxin Chen, Xiao Gu i Xingfu Tang. "Electronic Metal-Support Interactions in Single-Atom Catalysts". Angewandte Chemie 126, nr 13 (5.03.2014): 3486–89. http://dx.doi.org/10.1002/ange.201309248.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Hu, Pingping, Zhiwei Huang, Zakariae Amghouz, Michiel Makkee, Fei Xu, Freek Kapteijn, Alla Dikhtiarenko, Yaxin Chen, Xiao Gu i Xingfu Tang. "Electronic Metal-Support Interactions in Single-Atom Catalysts". Angewandte Chemie International Edition 53, nr 13 (5.03.2014): 3418–21. http://dx.doi.org/10.1002/anie.201309248.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Liu, Jingyue Jimmy. "Advanced Electron Microscopy of Metal-Support Interactions in Supported Metal Catalysts". ChemCatChem 3, nr 6 (7.06.2011): 934–48. http://dx.doi.org/10.1002/cctc.201100090.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Tang, Hailian, Yang Su, Yalin Guo, Leilei Zhang, Tianbo Li, Ketao Zang, Fei Liu i in. "Oxidative strong metal–support interactions (OMSI) of supported platinum-group metal catalysts". Chemical Science 9, nr 32 (2018): 6679–84. http://dx.doi.org/10.1039/c8sc01392f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Kubička, David, Narendra Kumar, Tapani Venäläinen, Hannu Karhu, Iva Kubičková, Heidi Österholm i Dmitry Yu Murzin. "Metal−Support Interactions in Zeolite-Supported Noble Metals: Influence of Metal Crystallites on the Support Acidity". Journal of Physical Chemistry B 110, nr 10 (marzec 2006): 4937–46. http://dx.doi.org/10.1021/jp055754k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Guo, Yu, i Ya-Wen Zhang. "Metal Clusters Dispersed on Oxide Supports: Preparation Methods and Metal-Support Interactions". Topics in Catalysis 61, nr 9-11 (15.05.2018): 855–74. http://dx.doi.org/10.1007/s11244-018-0957-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Tang, Hailian, Jiake Wei, Fei Liu, Botao Qiao, Xiaoli Pan, Lin Li, Jingyue Liu, Junhu Wang i Tao Zhang. "Strong Metal–Support Interactions between Gold Nanoparticles and Nonoxides". Journal of the American Chemical Society 138, nr 1 (28.12.2015): 56–59. http://dx.doi.org/10.1021/jacs.5b11306.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Vander Wal, Randall L., Thomas M. Ticich i Valerie E. Curtis. "Substrate–support interactions in metal-catalyzed carbon nanofiber growth". Carbon 39, nr 15 (grudzień 2001): 2277–89. http://dx.doi.org/10.1016/s0008-6223(01)00047-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

BRAUNSCHWEIG, E. "Reversibility of strong metal-support interactions on Rh/TiO2". Journal of Catalysis 118, nr 1 (lipiec 1989): 227–37. http://dx.doi.org/10.1016/0021-9517(89)90313-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Puskas, Imre, Theo H. Fleisch, Jan B. Hall, Bernard L. Meyers i Robert T. Roginski. "Metal-support interactions in precipitated, magnesium-promoted cobaltsilica catalysts". Journal of Catalysis 134, nr 2 (kwiecień 1992): 615–28. http://dx.doi.org/10.1016/0021-9517(92)90347-k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Cargnello, M., P. Fornasiero i R. J. Gorte. "Opportunities for Tailoring Catalytic Properties Through Metal-Support Interactions". Catalysis Letters 142, nr 9 (7.08.2012): 1043–48. http://dx.doi.org/10.1007/s10562-012-0883-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Campisi, Sebastiano, Carine Chan-Thaw i Alberto Villa. "Understanding Heteroatom-Mediated Metal–Support Interactions in Functionalized Carbons: A Perspective Review". Applied Sciences 8, nr 7 (17.07.2018): 1159. http://dx.doi.org/10.3390/app8071159.

Pełny tekst źródła
Streszczenie:
Carbon-based materials show unique chemicophysical properties, and they have been successfully used in many catalytic processes, including the production of chemicals and energy. The introduction of heteroatoms (N, B, P, S) alters the electronic properties, often increasing the reactivity of the surface of nanocarbons. The functional groups on the carbons have been reported to be effective for anchoring metal nanoparticles. Although the interaction between functional groups and metal has been studied by various characterization techniques, theoretical models, and catalytic results, the role and nature of heteroatoms is still an object of discussion. The aim of this review is to elucidate the metal–heteroatoms interaction, providing an overview of the main experimental and theoretical outcomes about heteroatom-mediated metal–support interactions. Selected studies showing the effect of heteroatom–metal interaction in the liquid-phase alcohol oxidation will be also presented.
Style APA, Harvard, Vancouver, ISO itp.
26

Luo, Zijie, Jia Wang, Wei Zhou i Junsheng Li. "Catalyst-Support Interactions Promoted Acidic Electrochemical Oxygen Evolution Catalysis: A Mini Review". Molecules 28, nr 5 (28.02.2023): 2262. http://dx.doi.org/10.3390/molecules28052262.

Pełny tekst źródła
Streszczenie:
In the context of the growing human demand for green secondary energy sources, proton-exchange membrane water electrolysis (PEMWE) is necessary to meet the high-efficiency production of high-purity hydrogen required for proton-exchange membrane fuel cells (PEMFCs). The development of stable, efficient, and low-cost oxygen evolution reaction (OER) catalysts is key to promoting the large-scale application of hydrogen production by PEMWE. At present, precious metals remain irreplaceable in acidic OER catalysis, and loading the support body with precious metal components is undoubtedly an effective strategy to reduce costs. In this review, we will discuss the unique role of common catalyst-support interactions such as Metal-Support Interactions (MSIs), Strong Metal-Support Interactions (SMSIs), Strong Oxide-Support Interactions (SOSIs), and Electron-Metal-Support Interactions (EMSIs) in modulating catalyst structure and performance, thereby promoting the development of high-performance, high-stability, low-cost noble metal-based acidic OER catalysts.
Style APA, Harvard, Vancouver, ISO itp.
27

Gómez-Polo, C., A. Gil, S. A. Korili, J. I. Pérez-Landazabal, V. Recarte, R. Trujillano i M. A. Vicente. "Magnetic Properties of Nickel and Cobalt Catalysts Supported on Nanoporous Oxides". Journal of Nanoscience and Nanotechnology 8, nr 6 (1.06.2008): 2905–11. http://dx.doi.org/10.1166/jnn.2008.18317.

Pełny tekst źródła
Streszczenie:
The aim of this work is to use magnetic measurements as a research tool in the study of possible metal-support interactions in nickel and cobalt nanoporous catalysts. Several physicochemical techniques, namely nitrogen adsorption, X-ray diffraction, temperature-programmed reduction and chemical analysis, were used to analyze the role of the preparation method and the nature of the support on the existence of such metal-support interactions and to relate them with the magnetic response of these nanoporous systems. The catalysts were prepared by incipient wetness impregnation and precipitation-deposition with two commercial oxides, γ-Al2O3 and SiO2, as supports. The magnetic behavior of the catalysts is drastically affected by the existence of interactions between the metal and the support during the preparation procedure. The samples with weak metal-support interactions have characteristic magnetic behavior of antiferromagnetic metal oxide nanoparticles, while the ones having strong interactions display spin-glass like behavior.
Style APA, Harvard, Vancouver, ISO itp.
28

Konsolakis, Michalis, i Zisis Ioakeimidis. "Surface/structure functionalization of copper-based catalysts by metal-support and/or metal–metal interactions". Applied Surface Science 320 (listopad 2014): 244–55. http://dx.doi.org/10.1016/j.apsusc.2014.08.114.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Ji, L., J. Lin i H. C. Zeng. "Metal−Support Interactions in Co/Al2O3Catalysts: A Comparative Study on Reactivity of Support". Journal of Physical Chemistry B 104, nr 8 (marzec 2000): 1783–90. http://dx.doi.org/10.1021/jp993400l.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Liu, Jingyue. "ChemInform Abstract: Advanced Electron Microscopy of Metal-Support Interactions in Supported Metal Catalysts". ChemInform 42, nr 41 (19.09.2011): no. http://dx.doi.org/10.1002/chin.201141203.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Mogorosi, Ramoshibidu P., Nico Fischer, Michael Claeys i Eric van Steen. "Strong-metal–support interaction by molecular design: Fe–silicate interactions in Fischer–Tropsch catalysts". Journal of Catalysis 289 (maj 2012): 140–50. http://dx.doi.org/10.1016/j.jcat.2012.02.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Zhang, Yunshang, Jin‐Xun Liu, Kun Qian, Aiping Jia, Dan Li, Lei Shi, Jun Hu, Junfa Zhu i Weixin Huang. "Structure Sensitivity of Au‐TiO 2 Strong Metal–Support Interactions". Angewandte Chemie International Edition 60, nr 21 (16.04.2021): 12074–81. http://dx.doi.org/10.1002/anie.202101928.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Zhang, Yunshang, Jin‐Xun Liu, Kun Qian, Aiping Jia, Dan Li, Lei Shi, Jun Hu, Junfa Zhu i Weixin Huang. "Structure Sensitivity of Au‐TiO 2 Strong Metal–Support Interactions". Angewandte Chemie 133, nr 21 (16.04.2021): 12181–88. http://dx.doi.org/10.1002/ange.202101928.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Vaarkamp, Marius, Jeff T. Miller, Frank S. Modica i Dick C. Koningsberger. "The Influence of Metal-Support Interactions on the Whiteline Intensity". Japanese Journal of Applied Physics 32, S2 (1.01.1993): 454. http://dx.doi.org/10.7567/jjaps.32s2.454.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Shi, Qiaolan, Tianrong Yu, Renfei Wu i Jian Liu. "Metal–Support Interactions of Single-Atom Catalysts for Biomedical Applications". ACS Applied Materials & Interfaces 13, nr 51 (16.12.2021): 60815–36. http://dx.doi.org/10.1021/acsami.1c18797.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Sault, Allen G., Charles H. F. Peden i Elaine P. Boespflug. "Metal-Support Interactions in Hydrous Titanium Oxide-Supported Nickel Catalysts". Journal of Physical Chemistry 98, nr 6 (luty 1994): 1652–62. http://dx.doi.org/10.1021/j100057a019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Ahmadi, M., H. Mistry i B. Roldan Cuenya. "Tailoring the Catalytic Properties of Metal Nanoparticles via Support Interactions". Journal of Physical Chemistry Letters 7, nr 17 (25.08.2016): 3519–33. http://dx.doi.org/10.1021/acs.jpclett.6b01198.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Ozin, Geoffrey A., Francois Hugues i Saba M. Mattar. "Atomic silver fluorescent probe of metal-support interactions in zeolites". Journal of Physical Chemistry 89, nr 2 (styczeń 1985): 300–304. http://dx.doi.org/10.1021/j100248a025.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Mullins, D. R., i K. Z. Zhang. "Metal–support interactions between Pt and thin film cerium oxide". Surface Science 513, nr 1 (lipiec 2002): 163–73. http://dx.doi.org/10.1016/s0039-6028(02)01704-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Soria, J., M. T. Blasco i J. C. Conesa. "Metal-support interactions in supported nickel catalysts: a FMR study". Surface Science Letters 251-252 (lipiec 1991): A373. http://dx.doi.org/10.1016/0167-2584(91)91015-o.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

AKUBUIRO, E. "Dopant-induced metal-support interactions 1. Influence on chemisorptive behavior". Journal of Catalysis 103, nr 2 (luty 1987): 320–33. http://dx.doi.org/10.1016/0021-9517(87)90124-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Soria, J., M. T. Blasco i J. C. Conesa. "Metal-support interactions in supported nickel catalysts: a FMR study". Surface Science 251-252 (lipiec 1991): 1018–22. http://dx.doi.org/10.1016/0039-6028(91)91143-l.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Cammarota, Ryan C., Laura J. Clouston i Connie C. Lu. "Leveraging molecular metal–support interactions for H2 and N2 activation". Coordination Chemistry Reviews 334 (marzec 2017): 100–111. http://dx.doi.org/10.1016/j.ccr.2016.06.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Vayenas, C. G., i G. E. Pitselis. "Mathematical Modeling of Electrochemical Promotion and of Metal−Support Interactions". Industrial & Engineering Chemistry Research 40, nr 20 (październik 2001): 4209–15. http://dx.doi.org/10.1021/ie010001f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Chen, Kaidong, Yining Fan i Qijie Yan. "Metal–Support Interactions in Fe/ZrO2Catalysts for Hydrogenation of CO". Journal of Catalysis 167, nr 2 (kwiecień 1997): 573–75. http://dx.doi.org/10.1006/jcat.1997.1592.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Vayenas, Costas G. "Promotion, Electrochemical Promotion and Metal–Support Interactions: Their Common Features". Catalysis Letters 143, nr 11 (22.10.2013): 1085–97. http://dx.doi.org/10.1007/s10562-013-1128-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Tan, Kaiyang, Mudit Dixit, James Dean i Giannis Mpourmpakis. "Predicting Metal–Support Interactions in Oxide-Supported Single-Atom Catalysts". Industrial & Engineering Chemistry Research 58, nr 44 (8.10.2019): 20236–46. http://dx.doi.org/10.1021/acs.iecr.9b04068.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Liu, Lichen, Chengyan Ge, Weixin Zou, Xianrui Gu, Fei Gao i Lin Dong. "Crystal-plane-dependent metal–support interaction in Au/TiO2". Physical Chemistry Chemical Physics 17, nr 7 (2015): 5133–40. http://dx.doi.org/10.1039/c4cp05449k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Frey, H., A. Beck, X. Huang, J. A. van Bokhoven i M. G. Willinger. "Dynamic interplay between metal nanoparticles and oxide support under redox conditions". Science 376, nr 6596 (27.05.2022): 982–87. http://dx.doi.org/10.1126/science.abm3371.

Pełny tekst źródła
Streszczenie:
The dynamic interactions between noble metal particles and reducible metal-oxide supports can depend on redox reactions with ambient gases. Transmission electron microscopy revealed that the strong metal-support interaction (SMSI)–induced encapsulation of platinum particles on titania observed under reducing conditions is lost once the system is exposed to a redox-reactive environment containing oxygen and hydrogen at a total pressure of ~1 bar. Destabilization of the metal–oxide interface and redox-mediated reconstructions of titania lead to particle dynamics and directed particle migration that depend on nanoparticle orientation. A static encapsulated SMSI state was reestablished when switching back to purely oxidizing conditions. This work highlights the difference between reactive and nonreactive states and demonstrates that manifestations of the metal-support interaction strongly depend on the chemical environment.
Style APA, Harvard, Vancouver, ISO itp.
50

Wang, Fei, Jianzhun Jiang i Bin Wang. "Recent In Situ/Operando Spectroscopy Studies of Heterogeneous Catalysis with Reducible Metal Oxides as Supports". Catalysts 9, nr 5 (23.05.2019): 477. http://dx.doi.org/10.3390/catal9050477.

Pełny tekst źródła
Streszczenie:
For heterogeneous catalysis, the metal catalysts supported on reducible metal oxides, especially CeO2 and TiO2, have long been a research focus because of their excellent catalytic performance in a variety of catalytic reactions. Detailed understanding of the promotion effect of reducible metal oxides on catalytic reactions is beneficial to the rational design of new catalysts. The important catalytic roles of reducible metal oxides are attributed to their intimate interactions with the supported metals (e.g., strong metal-support interaction, electronic metal-support interaction) and unique support structures (e.g., oxygen vacancy, reversible valence change, surface hydroxyl). However, the structures of the catalysts and reaction mechanisms are strongly affected by environmental conditions. For this reason, in situ/operando spectroscopy studies under working conditions are necessary to obtain accurate information about the structure-activity relationship. In this review, the recent applications of the in situ/operando spectroscopy methodology on metal catalysts with reducible metal oxides as supports are summarized.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii