Artykuły w czasopismach na temat „Metal Phosphate Porous Materials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Metal Phosphate Porous Materials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Podgorbunsky, Anatoly B., O. O. Shichalin i S. V. Gnedenkov. "Composite Materials Based on Magnesium and Calcium Phosphate Compounds". Materials Science Forum 992 (maj 2020): 796–801. http://dx.doi.org/10.4028/www.scientific.net/msf.992.796.
Pełny tekst źródłaShablovski, Vladimir, Alla Tuchkoskaya, Vladimir Rukhlya, Olga Pap i Kateryna Kudelko. "THE STUDY OF THE SORPTION PROPERTIES OF FILTERING MATERIALS BASED ON TITANIUM PHOSPHATE - POROUS TITANIUM COMPOSITION". WATER AND WATER PURIFICATION TECHNOLOGIES. SCIENTIFIC AND TECHNICAL NEWS 31, nr 3 (22.12.2021): 19–25. http://dx.doi.org/10.20535/2218-930032021244507.
Pełny tekst źródłaHan, Ruo Bing, Chun Lei Wan, Hui Wu i Wei Pan. "An Original Process of Nanoporous Materials via Templating Nickel Phosphate Colloidal Particles". Key Engineering Materials 368-372 (luty 2008): 1706–8. http://dx.doi.org/10.4028/www.scientific.net/kem.368-372.1706.
Pełny tekst źródłaRokosz, Krzysztof, Tadeusz Hryniewicz, Steinar Raaen, Sofia Gaiaschi, Patrick Chapon, Dalibor Matýsek, Kornel Pietrzak, Monika Szymańska i Łukasz Dudek. "Metal Ions Supported Porous Coatings by Using AC Plasma Electrolytic Oxidation Processing". Materials 13, nr 17 (31.08.2020): 3838. http://dx.doi.org/10.3390/ma13173838.
Pełny tekst źródłaNandi, Mahasweta, Asim Bhaumik i Nawal K. Mal. "From Porous Metal Phosphates to Oxophenylphosphates: A Review". Recent Patents on Materials Science 3, nr 2 (23.04.2010): 151–66. http://dx.doi.org/10.2174/1874465611003020151.
Pełny tekst źródłaLiao, Chwen-Haw, Kun Fan, Song-Song Bao, Hao Fan, Xi-Zhang Wang, Zheng Hu, Mohamedally Kurmoo i Li-Min Zheng. "From a layered iridium(iii)–cobalt(ii) organophosphonate to an efficient oxygen-evolution-reaction electrocatalyst". Chemical Communications 55, nr 92 (2019): 13920–23. http://dx.doi.org/10.1039/c9cc06164a.
Pełny tekst źródłaCutrone, Li, Casas-Solvas, Menendez-Miranda, Qiu, Benkovics, Constantin i in. "Design of Engineered Cyclodextrin Derivatives for Spontaneous Coating of Highly Porous Metal-Organic Framework Nanoparticles in Aqueous Media". Nanomaterials 9, nr 8 (1.08.2019): 1103. http://dx.doi.org/10.3390/nano9081103.
Pełny tekst źródłaLee, Sanghan, i Jaephil Cho. "Stacked porous tin phosphate nanodisk anodes". Chemical Communications 46, nr 14 (2010): 2444. http://dx.doi.org/10.1039/b924381j.
Pełny tekst źródłaSpriano, Silvia, Anna Dmitruk, Krzysztof Naplocha i Sara Ferraris. "Tannic Acid Coatings to Control the Degradation of AZ91 Mg Alloy Porous Structures". Metals 13, nr 2 (19.01.2023): 200. http://dx.doi.org/10.3390/met13020200.
Pełny tekst źródłaMedvecky, Lubomir, Radoslava Stulajterova, Maria Giretova, Tibor Sopcak, Maria Faberova, Miroslav Hnatko i Tatana Fenclova. "Calcium Phosphate Cement Modified with Silicon Nitride/Tricalcium Phosphate Microgranules". Powder Metallurgy Progress 20, nr 1 (1.06.2020): 56–75. http://dx.doi.org/10.2478/pmp-2020-0006.
Pełny tekst źródłaChristodoulou, Ioanna, Tom Bourguignon, Xue Li, Gilles Patriarche, Christian Serre, Christian Marlière i Ruxandra Gref. "Degradation Mechanism of Porous Metal-Organic Frameworks by In Situ Atomic Force Microscopy". Nanomaterials 11, nr 3 (13.03.2021): 722. http://dx.doi.org/10.3390/nano11030722.
Pełny tekst źródłaDai, Honglian, Xinyu Wang, Yinchao Han, Xin Jiang i Shipu Li. "Preparation and Characterization of Porous Calcium Phosphate Bioceramics". Journal of Materials Science & Technology 27, nr 5 (styczeń 2011): 431–36. http://dx.doi.org/10.1016/s1005-0302(11)60087-x.
Pełny tekst źródłaAswin Kumar, Ilango, Antonysamy Jeyaseelan, Natrayasamy Viswanathan, Mu Naushad i Artur J. M. Valente. "Fabrication of lanthanum linked trimesic acid as porous metal organic frameworks for effective nitrate and phosphate adsorption". Journal of Solid State Chemistry 302 (październik 2021): 122446. http://dx.doi.org/10.1016/j.jssc.2021.122446.
Pełny tekst źródłaZhu, Jianhua, Jiacai Shu, Xiaojun Yue i Yiping Su. "Hollow and porous octacalcium phosphate superstructures mediated by the polyelectrolyte PSS: a superior removal capacity for heavy metal and antibiotics". Journal of Materials Science 55, nr 17 (10.03.2020): 7502–17. http://dx.doi.org/10.1007/s10853-020-04539-0.
Pełny tekst źródłaCheng, Hao, Siyang Gao, Deli Duan, Shuai Yang, Weihai Xue, Bi Wu i Zhenguo Zhu. "Study on the Tribological Behavior and the Interaction between Friction and Oxidation of Graphite Reinforced by Impregnated Phosphate at High Temperatures". Materials 16, nr 9 (4.05.2023): 3517. http://dx.doi.org/10.3390/ma16093517.
Pełny tekst źródłaFielding, Gary A., Naboneeta Sarkar, Sahar Vahabzadeh i Susmita Bose. "Regulation of Osteogenic Markers at Late Stage of Osteoblast Differentiation in Silicon and Zinc Doped Porous TCP". Journal of Functional Biomaterials 10, nr 4 (5.11.2019): 48. http://dx.doi.org/10.3390/jfb10040048.
Pełny tekst źródłaNejneru, Carmen, Diana-Petronela Burduhos-Nergis, Mihai Axinte, Manuela Cristina Perju i Costica Bejinariu. "Analysis of the Physical-Mechanical Properties of the Zinc Phosphate Layer Deposited on a Nodular Cast Iron Substrate". Coatings 12, nr 10 (22.09.2022): 1384. http://dx.doi.org/10.3390/coatings12101384.
Pełny tekst źródłaDucheyne, Paul, Paul D. Bianco i Cheolsang Kim. "Bone tissue growth enhancement by calcium phosphate coatings on porous titanium alloys: The effect of shielding metal dissolution product". Biomaterials 13, nr 9 (styczeń 1992): 617–24. http://dx.doi.org/10.1016/0142-9612(92)90030-r.
Pełny tekst źródłaPligovka, Andrei, Andrei Lazavenka, Ulyana Turavets, Alexander Hoha i Marco Salerno. "Two-Level 3D Column-like Nanofilms with Hexagonally–Packed Tantalum Fabricated via Anodizing of Al/Nb and Al/Ta Layers—A Potential Nano-Optical Biosensor". Materials 16, nr 3 (21.01.2023): 993. http://dx.doi.org/10.3390/ma16030993.
Pełny tekst źródłaPaul, Jose, Md Moniruzzaman i Jongsung Kim. "Framing of Poly(arylene-ethynylene) around Carbon Nanotubes and Iodine Doping for the Electrochemical Detection of Dopamine". Biosensors 13, nr 3 (22.02.2023): 308. http://dx.doi.org/10.3390/bios13030308.
Pełny tekst źródłaDuraisamy, Ramesh, Kannan Pownsamy i Ghebray Asgedom. "Chemical Degradation of Epoxy-Polyamide Primer by Electrochemical Impedance Spectroscopy". ISRN Corrosion 2012 (9.07.2012): 1–10. http://dx.doi.org/10.5402/2012/819719.
Pełny tekst źródłaLi, Chun, Xin Wang, Zi Jiao, Yu Zhang, Xiang Yin, Xue Cui i Yue Wei. "Functionalized Porous Silica-Based Nano/Micro Particles for Environmental Remediation of Hazard Ions". Nanomaterials 9, nr 2 (12.02.2019): 247. http://dx.doi.org/10.3390/nano9020247.
Pełny tekst źródłaObradovic, Nina, Suzana Filipovic, Jelena Rusmirovic, Georgeta Postole, Aleksandar Marinkovic, Danka Radic, Vesna Rakic, Vladimir Pavlovic i Aline Auroux. "Formation of porous wollastonite-based ceramics after sintering with yeast as the pore-forming agent". Science of Sintering 49, nr 3 (2017): 235–46. http://dx.doi.org/10.2298/sos1703235o.
Pełny tekst źródłaLi, Yang, Lu Chen, Liu Hong, Kun Ran, Yonghong Zhan i Qi Chen. "Fabrication of porous silicon carbide ceramics at low temperature using aluminum dihydrogen phosphate as binder". Journal of Alloys and Compounds 785 (maj 2019): 838–45. http://dx.doi.org/10.1016/j.jallcom.2019.01.114.
Pełny tekst źródłaDairaghi, Jacob, Dan Rogozea, Rachel Cadle, Joseph Bustamante, Leni Moldovan, Horia I. Petrache i Nicanor I. Moldovan. "3D Printing of Human Ossicle Models for the Biofabrication of Personalized Middle Ear Prostheses". Applied Sciences 12, nr 21 (31.10.2022): 11015. http://dx.doi.org/10.3390/app122111015.
Pełny tekst źródłaJakubowicz, J., G. Adamek i L. Smardz. "Porous Surface State Analysis of Anodized Titanium for Biomedical Applications". Metallurgical and Materials Transactions A 53, nr 1 (8.11.2021): 86–94. http://dx.doi.org/10.1007/s11661-021-06492-2.
Pełny tekst źródłaZaniolo, Karina M., Sonia R. Biaggio, Joni A. Cirelli, Mariana A. Cominotte, Nerilso Bocchi i Romeu C. Rocha-Filho. "Physical characterization and biological tests of bioactive titanium surfaces prepared by short-time micro-arc oxidation in green electrolyte". Materials Research Express 9, nr 2 (1.02.2022): 025401. http://dx.doi.org/10.1088/2053-1591/ac4d53.
Pełny tekst źródłaMuto, Akinori, Osamu Uehara, Thallada Bhaskar, Yusaku Sakata i Takayuki Hirai. "Decomposition of Methylene Blue in Water by a Composite of Titanium Phosphate-porous Carbon". Journal of the Japan Society of Powder and Powder Metallurgy 55, nr 1 (2008): 51–54. http://dx.doi.org/10.2497/jjspm.55.51.
Pełny tekst źródłaDuarte, Thiago, Yuri A. Meyer i Wislei R. Osório. "The Holes of Zn Phosphate and Hot Dip Galvanizing on Electrochemical Behaviors of Multi-Coatings on Steel Substrates". Metals 12, nr 5 (18.05.2022): 863. http://dx.doi.org/10.3390/met12050863.
Pełny tekst źródłaZhang, Hanyuan, Shu Yang i Kuang Sheng. "The Leakage Mechanism of the Package of the AlGaN/GaN Liquid Sensor". Materials 13, nr 8 (17.04.2020): 1903. http://dx.doi.org/10.3390/ma13081903.
Pełny tekst źródłaLim, Yau-Yan, Dugald J. MacLachlan, Thomas D. Smith, Jim Jamis, John R. Pilbrow i Ruitian Song. "A Study of the Active Sites of the Mesoporous Molecular Sieve MCM-41 and Related Zeolitic Materials by Using Fourier-Transform I.R., Continuous-Wave E.S.R. and Pulsed E.S.R. Spectroscopic Probes". Australian Journal of Chemistry 50, nr 1 (1997): 53. http://dx.doi.org/10.1071/c96093.
Pełny tekst źródłaKamitakahara, Masanobu, Chikara Ohtsuki, Makoto Oishi, Shin-ichi Ogata, Masao Tanihara i Toshiki Miyazaki. "Control of the Microstructure of Porous Tricalcium Phosphate: Effects of addition of Mg, Zn and Fe". Journal of the Japan Society of Powder and Powder Metallurgy 52, nr 5 (2005): 356–59. http://dx.doi.org/10.2497/jjspm.52.356.
Pełny tekst źródłaCassagneau, Thierry, Gary B. Hix, Deborah J. Jones, Pedro Maireles-Torres, Mohammed Rhomari i Jacques Rozière. "Nano/nanocomposite systems: in situ growth of particles and clusters of semiconductor metal sulfides in porous silica-pillared layered phosphates". J. Mater. Chem. 4, nr 2 (1994): 189–95. http://dx.doi.org/10.1039/jm9940400189.
Pełny tekst źródłaAmera, A., A. M. A. Abudalazez, Rashid Ismail, Abd Razak, Malik Masudi, Rizal Kasim i Arifin Ahmad. "Synthesis and characterization of porous biphasic calcium phosphate scaffold from different porogens for possible bone tissue engineering applications". Science of Sintering 43, nr 2 (2011): 183–92. http://dx.doi.org/10.2298/sos1102183a.
Pełny tekst źródłaHanif, Qonita Awliya, Reva Edra Nugraha i Witri Wahyu Lestari. "Kajian Metal–Organic Frameworks (MOFS) sebagai Material Baru Pengantar Obat". ALCHEMY Jurnal Penelitian Kimia 14, nr 1 (15.02.2018): 16. http://dx.doi.org/10.20961/alchemy.14.1.8218.16-36.
Pełny tekst źródłaChen, Haiwen, Wenxue Dou, Qingfeng Zhu, Danyu Jiang, Jinfeng Xia, Xingang Wang, Weizhong Tang i Shaohai Wang. "The extraction and characterization of porous HA/β-TCP biphasic calcium phosphate from sole fish bones at different temperatures". Materials Research Express 6, nr 12 (4.12.2019): 125412. http://dx.doi.org/10.1088/2053-1591/ab5a8f.
Pełny tekst źródłaSingh, Rajeev, Avadesh K. Sharma i Ajay K. Sharma. "Enhancement of mechanical and bioactive characteristics of NiTiMD composite reinforced with waste marble dust". International Journal of Materials Research 113, nr 1 (1.01.2022): 44–59. http://dx.doi.org/10.1515/ijmr-2021-8258.
Pełny tekst źródłaGallaway, Joshua W. "(Invited) Operando Measurement of Heterogeneities in All-Solid-State Li Battery Electrodes". ECS Meeting Abstracts MA2022-01, nr 38 (7.07.2022): 1663. http://dx.doi.org/10.1149/ma2022-01381663mtgabs.
Pełny tekst źródłaNaberezhnykh, G., A. Sergeev i O. Novikova. "QUANTUM DOTS OF CADMIUM SULFIDE PRODUCED WITH THE USE OF PROTEINS-PORINS, CARRAGEANANS, CHITOSANS AND LIPOPOLOSACCHARIDES". Russian Journal of Biological Physics and Chemisrty 7, nr 3 (28.09.2022): 428–33. http://dx.doi.org/10.29039/rusjbpc.2022.0539.
Pełny tekst źródłaBarrère, Florence, Chantal M. van der Valk, Remco A. J. Dalmeijer, Gert Meijer, Clemens A. van Blitterswijk, Klaas de Groot i Pierre Layrolle. "Osteogenecity of octacalcium phosphate coatings applied on porous metal implants". Journal of Biomedical Materials Research Part A 66A, nr 4 (7.08.2003): 779–88. http://dx.doi.org/10.1002/jbm.a.10454.
Pełny tekst źródłaDelaney, Paul, Colm McManamon, John P. Hanrahan, Mark P. Copley, Justin D. Holmes i Michael A. Morris. "Development of chemically engineered porous metal oxides for phosphate removal". Journal of Hazardous Materials 185, nr 1 (styczeń 2011): 382–91. http://dx.doi.org/10.1016/j.jhazmat.2010.08.128.
Pełny tekst źródłaIoku, Koji, Masanobu Kamitakahara, Noriaki Watanabe, Osamu Kawaguchi, Setsuaki Murakami i Tohru Ikeda. "Calcium Phosphate Porous Materials with Unique Microstructures". Key Engineering Materials 396-398 (październik 2008): 645–48. http://dx.doi.org/10.4028/www.scientific.net/kem.396-398.645.
Pełny tekst źródłaRodríguez-Lorenzo, Luis M., i Kārlis A. Gross. "Calcium Phosphate Porous Scaffolds from Natural Materials". Key Engineering Materials 254-256 (grudzień 2003): 957–60. http://dx.doi.org/10.4028/www.scientific.net/kem.254-256.957.
Pełny tekst źródłaMaireles-Torres, P., P. Olivera-Pastor, E. Rodríguez-Castellón, A. Jiménez-López i A. A. G. Tomlinson. "Porous chromia-pillared α-tin phosphate materials". Journal of Solid State Chemistry 94, nr 2 (październik 1991): 368–80. http://dx.doi.org/10.1016/0022-4596(91)90203-t.
Pełny tekst źródłaESCHENROEDER, H. C., R. E. MCLAUGHLIN i S. I. REGER. "Enhanced Stabilization of Porous-coated Metal Implants with Tricalcium Phosphate Granules". Clinical Orthopaedics and Related Research &NA;, nr 216 (marzec 1987): 234???246. http://dx.doi.org/10.1097/00003086-198703000-00037.
Pełny tekst źródłaMARTINEZLARA, M., E. FARFANTORRES, J. SANTAMARIAGONZALEZ i A. JIMENEZLOPEZ. "Porous silica pillared α-ZrTi phosphate-phosphonates materials". Solid State Ionics 73, nr 3-4 (listopad 1994): 189–98. http://dx.doi.org/10.1016/0167-2738(94)90034-5.
Pełny tekst źródłaRambo, C. R., L. Ghussn, F. F. Sene i J. R. Martinelli. "Manufacturing of porous niobium phosphate glasses". Journal of Non-Crystalline Solids 352, nr 32-35 (wrzesień 2006): 3739–43. http://dx.doi.org/10.1016/j.jnoncrysol.2006.03.104.
Pełny tekst źródłaYang, Weishen, i Guoxing Xiong. "Novel porous metal/ceramic membrane materials". Current Opinion in Solid State and Materials Science 4, nr 1 (luty 1999): 103–7. http://dx.doi.org/10.1016/s1359-0286(99)80018-7.
Pełny tekst źródłaDoi, Kazuya, Yasuhiko Abe, Reiko Kobatake, Yohei Okazaki, Yoshifumi Oki, Yoshihito Naito, Widyasri Prananingrum i Kazuhiro Tsuga. "Novel Development of Phosphate Treated Porous Hydroxyapatite". Materials 10, nr 12 (8.12.2017): 1405. http://dx.doi.org/10.3390/ma10121405.
Pełny tekst źródłaFang, Yu Cheng, H. Wang, Yong Zhou i Chun Jiang Kuang. "Development of Some New Porous Metal Materials". Materials Science Forum 534-536 (styczeń 2007): 949–52. http://dx.doi.org/10.4028/www.scientific.net/msf.534-536.949.
Pełny tekst źródła