Rozprawy doktorskie na temat „Metal Phosphate Porous Materials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Metal Phosphate Porous Materials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Yang, Zhu. "Preparation and Application of Hierarchically Porous Monolithic Materials with Embedded Nanoscale Interfaces". 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215332.
Pełny tekst źródłaWharmby, Michael T. "Synthesis of porous metal phosphonate frameworks for applications in gas separation and storage". Thesis, University of St Andrews, 2012. http://hdl.handle.net/10023/3450.
Pełny tekst źródłaSu, Zixue. "Porous anodic metal oxides". Thesis, University of St Andrews, 2010. http://hdl.handle.net/10023/1019.
Pełny tekst źródłaZheng, Yu 1970. "Modelling of solidification of porous metal-hydrogen alloys". Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/37004.
Pełny tekst źródłaTaksande, Kiran. "Exploration of the Ionic Conduction Properties of Porous MOF Materials". Thesis, Université de Montpellier (2022-….), 2022. http://www.theses.fr/2022UMONS010.
Pełny tekst źródłaThe conductivity performance of a new series of chemically stable proton conducting Metal Organic Frameworks (MOFs) as well as a superionic molecular crystal was explored. The contribution of this PhD was to (i) select a variety of architectures and functionalities of robust MOFs/superionic molecular solids and (ii) characterize and rationalize their conducting performance over various temperature/humidity conditions. We designed two series of MOFs to achieve promising proton-conducting performance, using distinct approaches to modulate the concentration of Brønsted acidic sites and charge carriers and further boost the conductivity properties. First, a multicomponent ligand replacement strategy was successfully employed to elaborate a series of multivariate sulfonic-based solids MIP-207-(SO3H-IPA)x-(BTC)1–x which combine structural integrity with high proton conductivity values (e.g., σ = 2.6 × 10–2 S cm–1 at 363 K/95% Relative Humidity -RH-). Secondly, a proton conducting composite was prepared through the impregnation of an ionic liquid (1-Ethyl-3-methylimidazolium chloride, EMIMCl) in the mesoporous MIL-101(Cr)-SO3H. The resulting composite displaying high thermal and chemical stability, exhibits outstanding proton conductivity not only at the anhydrous state (σ473 K = 1.5 × 10-3 S cm-1) but also under humidity (σ(343 K/60%-80%RH) ≥ 0.10 S cm-1) conditions. Finally, the ionic conducting properties of another class of porous solids, considering a zirconium-formate molecular solid containing KCl ion pairs (ZF-3) were explored. ZF-3 switches from an insulator (σ = 5.1 x 10-10 S cm-1 at 363 K/0% RH) to a superionic conductor upon hydration (σ = 5.2 x 10-2 S cm-1 at 363 K/95 % RH), in relation with the boost of Cl- dynamics upon water adsorption. Noteworthy, quantum- and force-field based simulations were combined with the experimental approach to elucidate the microscopic mechanisms at the origin of the ionic conducting properties of the studied materials. This fundamental knowledge will serve to create novel robust superionic conductors with outstanding performances that will pave the way towards appealing societal applications for clean energy production
Mu, Bin. "Synthesis and gas adsorption study of porous metal-organic framework materials". Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41097.
Pełny tekst źródłaZhao, Yue. "Preparation and investigation of group 13 metal organo-phosphate hybrid-framework materials". Winston-Salem, NC : Wake Forest University, 2009. http://dspace.zsr.wfu.edu/jspui/handle/10339/42608.
Pełny tekst źródłaTitle from electronic thesis title page. Thesis advisor: Abdessadek Lachgar. Vita. Includes bibliographical references (p. 140-156).
Mochizuki, Shuto. "Controlled radical polymerization in designed porous materials". Kyoto University, 2019. http://hdl.handle.net/2433/242535.
Pełny tekst źródłaAnnamalai, Perushini. "Electrospinning of porous composite materials for hydrogen storage application". University of the Western Cape, 2016. http://hdl.handle.net/11394/5654.
Pełny tekst źródłaDue to the rapid depletion of fossil fuel reserves and the production of environmentally harmful by-products such as carbon dioxide, there is an urgent need for alternate sustainable clean energy. One of the leading candidates in this endeavour is hydrogen, which can be used as an energy carrier since it has a high energy density, zero emissions and is produced from non-depletable resources such as water. The major challenge hindering a hydrogen economy is the lack of safe and effective storage technologies for mobile applications. A prospective solution to this problem lies in the use of porous powdered materials, which adsorb the hydrogen gas. However, the integration of these powdered materials into a storage tank system, results in the pipelines being contaminated during filling cycles. This necessitates the shaping of the porous powdered materials. Among the many shaping techniques available, the electrospinning technique has been proposed as a promising technology since it is a versatile process that is easily scaled-up making it attractive for the applications of the study. Furthermore, the electrospinning process enables the synthesis of nano-sized fibres with attractive hydrogen sorption characteristics. In this regard, the current study employs the electrospinning technique to synthesise electrospun composite fibres for mobile hydrogen storage applications. After electrospinning three polymers, polyacrylonitrile (PAN) was selected as the most suitable polymer because it yielded bead-free electrospun fibres. However, the diameter of the PAN fibres was large/thick which prompted further optimisation of the electrospinning parameters. The optimised electrospinning conditions that yield unbeaded fibres within the desired diameter range (of 300-500 nm) were a PAN concentration of 10 wt%, a flow rate of 0.4 mL/h, a distance of 10 cm between the needle tip and collector plate, and an applied voltage of 8 kV. The study then progressed to the synthesis and characterisation of the pristine porous powdered materials which adsorb hydrogen gas. The porous powdered materials investigated were commercial zeolite 13X, its synthesised templated carbon derivative (ZTC) and Zr (UiO-66) and Cr (MIL-101) based metal-organic frameworks (MOFs). ZTC was synthesised via liquid impregnation coupled with chemical vapour deposition (CVD), and the MOFs were synthesised by the modulated solvothermal method. Analysis of the ZTCs morphology and phase crystallinity show that the carbon templated process using zeolites was successful, however, ZTC was amorphous compared to crystalline zeolite template. The BET surface area was assessed with the aid of nitrogen sorption isotherms for both zeolite 13X and ZTC, and values of 730 and 2717 m²/g, respectively were obtained. The hydrogen adsorption capacity for zeolite 13X was 1.6 wt% and increased to 2.4 wt% in the ZTC material at 77 K and 1 bar. The successful synthesis of well defined, crystalline MOFs was evident from X-ray diffraction and morphological analysis. The BET surface area and hydrogen adsorption for Zr MOF were 1186 m²/g and 1.5 wt%, respectively at 77 K and 1 bar. Cr MOF had a BET surface area of 2618 m²/g and hydrogen adsorption capacity of 1.9 wt% at 77 K and 1 bar. The main focus of the study was to synthesise electrospun composite fibres that can adsorb hydrogen gas and thus provide significant insight in this field of research. As such it examined composite fibres that incorporates porous powdered materials such as zeolite 13X, ZTCs, UiO-66 (Zr) MOF and MIL-101 (Cr) MOF and investigated their ability to adsorb hydrogen gas, which have not been reported previously. The synthesis of composite fibres was achieved by incorporating the porous powdered materials into the PAN resulting in a polymeric blend that was then electrospun. Morphological analysis illustrated that the porous powdered materials were successfully supported by or incorporated within the PAN fibres, forming composite fibres. The BET surface area of the 40 wt% zeolite-PAN and 12.5 wt% ZTC-PAN composite fibres were 440 and 1787 m²/g respectively. Zr MOF and Cr MOF composite fibres had a BET surface area of 815 and 1134 m²/g, respectively. The BET surface area had reduced by 40, 34, 31 and 57% for zeolite 13X, ZTC, Zr MOF and Cr MOF, respectively after these porous powdered materials were incorporated into PAN. The hydrogen adoption capacity for 40 wt% zeolite-PAN, 12.5 wt% ZTC-PAN, 20 wt% Zr MOFPAN and 20 wt% Cr MOF-PAN composite fibres was 0.8, 1.8, 0.9 and 1.1 wt%, respectively. This decrease was attributed to the limited amount of porous powdered materials that could be incorporated into the fibres since only 40 wt% of zeolite 13X, 12.5 wt% of ZTC and 20 wt% of the MOFs were loaded into their respective composite fibres. This was due to the fact that incorporation of greater amounts of porous powdered materials resulted in a viscous polymeric blend that was unable to be electrospun. It is evident from the study that electrospinning is a versatile process that is able to produce composite fibres with promising properties that can potentially advance the research in this field thus providing a practical solution to the problem of integrating loose powdered materials into an on-board hydrogen storage system.
CSIR Young Researchers Establishment Fund (YREF)
Taksande, Kiran. "Exploration of the Ionic Conduction Properties of Porous MOF Materials". Thesis, Montpellier, 2022. https://ged.scdi-montpellier.fr/florabium/jsp/nnt.jsp?nnt=2022UMONS010.
Pełny tekst źródłaThe conductivity performance of a new series of chemically stable proton conducting Metal Organic Frameworks (MOFs) as well as a superionic molecular crystal was explored. The contribution of this PhD was to (i) select a variety of architectures and functionalities of robust MOFs/superionic molecular solids and (ii) characterize and rationalize their conducting performance over various temperature/humidity conditions. We designed two series of MOFs to achieve promising proton-conducting performance, using distinct approaches to modulate the concentration of Brønsted acidic sites and charge carriers and further boost the conductivity properties. First, a multicomponent ligand replacement strategy was successfully employed to elaborate a series of multivariate sulfonic-based solids MIP-207-(SO3H-IPA)x-(BTC)1–x which combine structural integrity with high proton conductivity values (e.g., σ = 2.6 × 10–2 S cm–1 at 363 K/95% Relative Humidity -RH-). Secondly, a proton conducting composite was prepared through the impregnation of an ionic liquid (1-Ethyl-3-methylimidazolium chloride, EMIMCl) in the mesoporous MIL-101(Cr)-SO3H. The resulting composite displaying high thermal and chemical stability, exhibits outstanding proton conductivity not only at the anhydrous state (σ473 K = 1.5 × 10-3 S cm-1) but also under humidity (σ(343 K/60%-80%RH) ≥ 0.10 S cm-1) conditions. Finally, the ionic conducting properties of another class of porous solids, considering a zirconium-formate molecular solid containing KCl ion pairs (ZF-3) were explored. ZF-3 switches from an insulator (σ = 5.1 x 10-10 S cm-1 at 363 K/0% RH) to a superionic conductor upon hydration (σ = 5.2 x 10-2 S cm-1 at 363 K/95 % RH), in relation with the boost of Cl- dynamics upon water adsorption. Noteworthy, quantum- and force-field based simulations were combined with the experimental approach to elucidate the microscopic mechanisms at the origin of the ionic conducting properties of the studied materials. This fundamental knowledge will serve to create novel robust superionic conductors with outstanding performances that will pave the way towards appealing societal applications for clean energy production
Batisai, Eustina. "Synthesis and sorption studies of porous metal-organic hosts". Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/79803.
Pełny tekst źródłaENGLISH ABSTRACT: The first part of this study describes the synthesis of new porous materials from basic building blocks. Five structurally related ligands namely: N,N'-bis(3-pyridylmethyl)-naphthalene diimide (L1), N,N'-bis(4-pyridylmethyl)-naphthalene diimide (L2), N,N'-bis(4-pyridylmethyl)- pyromellitic diimide (L3), N,N'-bis(3-pyridylmethyl)-pyromellitic diimide (L4) and 2-(pyridin-4- ylmethyl)-benzene tricarboxylic anhydride (L5) were synthesised. Ligands L1 and L2 were reacted with metal nitrates and carboxylates as co-ligands in a systematic manner with a view to obtaining potentially porous 3–D coordination polymers. Ten structurally diverse coordination polymers were obtained and they were characterised by single-crystal X-ray diffraction, powder X-ray diffraction and thermogravimetric analysis. Four of these compounds absorb moderate amounts of CO2 and, in addition, show sorption selectivity towards CO2 over N2. The reaction of L3 and L4 with transition metal halides yielded two 1–D chains, while the reaction of L5 with transition metal nitrates yielded seven coordination polymers of which four are 2–D and three are 1–D. Of the 2–D structures three are isostructural. The second part of this work describes a variable pressure study of a flexible metal-organic framework [Zn2(BDC)2(BPY)] (BPY = 4,4 -bipyridine and BDC = 1,4-benzene dicarboxylic acid). [Zn2(BDC)2(BPY)] is one of the few examples of a flexible metal-organic framework that undergoes phase transformations in response to gas pressure. The high pressure sorption recorded for this metal-organic framework displays two inflection steps in the pressure range 0 to 30 bar, possibly indicating two phase transformations. The gas-loaded structures for each phase transformation were determined by means of single-crystal X-ray diffraction. High-pressure differential scanning calorimetry was also carried out on the system in order to determine accurate gate-opening pressures, as well as the energies involved with each phase transformation. The results correlate with those obtained from single-crystal X-ray diffraction and high-pressure sorption. The final section reports the mechanochemical synthesis of two Werner complexes [NiCl2(4- PhPy)4] (1), [CoCl2(4-PhPy)4] (2) and their corresponding solid solution [Ni0.5Co0.5Cl2(4-PhPy)4] (3) (PhPy = phenyl pyridine). The solid solution could only be formed by mechanochemical synthesis and not by conventional solution crystallisation methods. The solid solution exhibits sorption properties that differ from those of the pure compounds.
AFRIKAANSE OPSOMMING: Die eerste deel van hierdie studie beskryf die sintese van nuwe poreuse stowwe uit basiese boublokke. Vyf struktureel verwante ligande naamlik: N,N'-bis(3-piridielmetiel)-naftaleen diimied (L1), N,N'-bis(4-piridielmetiel)-naftaleen diimied (L2), N,N'-bis(4-piridielmetiel)- piromellitien diimied (L3), N,N'-bis(3-piridielmetiel)-piromellitien diimied (L4) en 2-(piridiel-4- ielmetiel)benseen trianhidried (L5) is gesintetiseer. Ligande L1 en L2 is gereageer met metaal nitrate en karboksielsure as mede-ligande in 'n sistematiese wyse met 'n oog op die verkryging van potensieel poreuse 3–D koördinasie polimere. Tien struktureel diverse koördinasie polimere is verkry en hulle is gekarakteriseer deur enkel-kristal X-straal-diffraksie, poeier X-straal diffraksie en termo-analise (thermal analysis). Vier van hierdie verbindings het matige hoeveelhede CO2 geabsorbeer en, bykomend, wys sorpsie selektiwiteit van CO2 oor N2. Die reaksie van L3 en L4 met oorgangsmetaalhaliede het twee 1–D kettings gevorm, terwyl die reaksie van L5 met oorgangsmetaal nitrate sewe koördinasie polimere opgelewer het, waarvan vier 2–D en drie 1–D polimere is. Van die 2–D polimere het drie vergelykbare strukture. Die tweede deel van hierdie werk beskryf 'n veranderlike druk studie van 'n buigsame metaalorganiese raamwerk [Zn2(BDC)2(BPY)] (BPY = 4,4-bipiridien en BDC = 1,4-benseen dikarboksielsuur). [Zn2(BDC)2(BPY)] is een van die min voorbeelde van 'n buigsame metaalorganiese raamwerk wat fase transformasies (phase transformations) ondergaan in respons op ‘n verandering in gas druk. Die hoë-druk sorpsie aangeteken vir hierdie metaal-organiese raamwerk vertoon twee infleksie stappe in die gebestudeerde druk gebied (0 tot 30 bar), wat moontlik op twee fase transformasies dui. Die gas-gelaaide strukture vir elke fase transformasie is bepaal deur middel van enkel-kristal X-straal-diffraksie. Hoë-druk differensiële skandeer kalorimetrie (differential scanning calorimetry) is ook uitgevoer op die stelsel ten einde dié akkurate hekopenings druk, sowel as die energie betrokke by elke fase transformasie te bepaal. Die resultate stem ooreen met dié verkry vanaf enkel-kristal X-straal diffraksie en hoë-druk sorpsie. Die finale afdeling bespreek die meganochemiese sintese van twee Werner komplekse [NiCl2(4-PhPy)4] (1) en [COCl2(4-PhPy)4] (2) en hul ooreenstemmende vaste oplossing (solid solution) [Ni0.5Co0.5Cl2(4-PhPy)4] (3). Die vaste oplossing kan slegs gevorm word deur meganochemiese sintese en nie deur konvensionele oplossing kristallisasie metodes. Die vaste oplossing vertoon sorpsie eienskappe wat verskil van dié van die suiwer verbindings.
Yigit, Mehmet Veysel. "Design of open hydrogen-bonded frameworks using bis(imidazolium 2,4,6-pyridinetricarboxylate)metal complexes as secondary building units". Link to electronic thesis, 2003. http://www.wpi.edu/Pubs/ETD/Available/etd-0514103-110657.
Pełny tekst źródłaLiu, Leifeng. "Inorganic and Metal-Organic Framework Materials : Synthesis and structure characterization". Doctoral thesis, Stockholms universitet, Institutionen för material- och miljökemi (MMK), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-102816.
Pełny tekst źródłaAt the time of the doctoral defence the following paper was unpublished and a status as follows: Paper 4: Manuscript
Al-Janabi, Nadeen. "Engineering novel porous materials for carbon capture and storage". Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/engineering-novel-porous-materials-for-carbon-capture-and-storage(919c4243-ed8d-4a6b-9207-43c6a2c62637).html.
Pełny tekst źródłaDeshpande, Atul Suresh. "Fabrication of porous metal oxides for catalytic application using templating techniques". Phd thesis, Universität Potsdam, 2004. http://opus.kobv.de/ubp/volltexte/2005/112/.
Pełny tekst źródłaEin Weg, um solche nanostrukturierte Materialien herzustellen, ist die sogenannte „Templatierungsmethode“. Das Templat besteht aus einem einzelnen Molekül, einer Ansammlung von Molekülen oder aus einem festen Objekt. Beim Aufbau des nanostrukturierten Materials wirkt das Templat als Schablone oder als Gussform und beeinflusst damit die Struktur des Endproduktes. Normalerweise besteht dieser Prozess aus mehreren Schritten. Zuerst wird der Raum um das Templat mit dem Ausgangsstoff umhüllt oder ausgefüllt, dann wird der Ausgangsstoff chemisch in das gewünschte Endprodukt umgewandelt, wobei das Templat die Endform kontrolliert und am Schluss wird das Templat entfernt. Das geschieht meistens durch Erhitzen. Als Ausgangsstoff können dabei einzelne Moleküle verwendet werden, die sich leicht in das Endprodukt umwandeln lassen, oder aber vorgeformte Partikelchen, die nur noch zur entsprechenden Form angeordnet werden müssen.
In dieser Arbeit wurden poröse Metalloxid-Kügelchen hergestellt, die aus einem Gemisch aus Titanoxid und entweder Aluminium-, Gallium- oder Indiumoxid bestehen. Als Template wurden poröse Kunststoffkügelchen eingesetzt, die man sonst für Chromatographiezwecke braucht. Bei der Synthese wurden die Poren der Kunststoffkügelchen mit dem Ausgangsmaterial gefüllt und mit Wasser in ein amorphes Netzwerk umgewandelt. Danach werden die Kügelchen erhitzt, wobei das Kunststofftemplat zersetzt wird. Gleichzeitig wird das amorphe Gerüst in stabile, kristalline Wände umgewandelt, die die Form der Kügelchen auch dann noch behalten, wenn das Templat verschwunden ist. Mit einem ähnlichen Prozess wurden auch Kügelchen aus Cer-Zirkonoxid erhalten. Als Ausgangsstoff wurden dabei aber vorgeformte Cer-Zirkonoxid-Nanopartikel eingesetzt, die in die Poren der Kunststofftemplatkügelchen hinein diffundieren. Diese Cer-Zirkonoxid-Nanopartikel lassen sich auch für die Herstellung von porösen Pulvern verwenden, wobei dann nicht Polymerkügelchen, sondern hochgeordnete Ansammlungen von Block Copolymeren als Template verwendet werden.
Form, Struktur und Eigenschaften all dieser Materialien wurden systematisch unter Anwendung verschiedenster Analysemethoden untersucht. Die auf Titanoxid-basierten Kügelchen wurden auch auf ihre photokatalytische Verwendung zum Abbau von umweltschädlichem 2-Chlorophenol untersucht. Die Cer-Zirkonoxid-Kügelchen wurden für die Herstellung von Wasserstoff aus Methanol getestet. Wasserstoff gilt als hoffungsvoller, sauberer Energieträger der Zukunft und kommt in Brennstoffzellen zum Einsatz.
Nanostructured materials are the materials having structural features on the scale of nanometers i.e. 10-9 m. the structural features can enhance the natural properties of the materials or induce additional properties, which are useful for day to technology as well as the future technologies
One way to synthesize nanostructured materials is using templating techniques. The templating process involves use of a certain “mould” or “scaffold” to generate the structure. The mould is called as the template, can be a single molecule or assembly of molecule or a larger object, which has its own structure. The product material can be obtained by filling the space around the template with a “precursor”, transformation of precursor into the desired material and then removal of template to get product. The precursor can be any chemical moiety that can be easily transformed in to the desired material. Alternatively the desired material is processed into very tiny bricks or “nano building blocks (NBB)” and the product is obtained by arrangement of the NBB by using a scaffold.
We synthesized porous metal oxide spheres of namely TiO2-M2O3: titanium dioxide- M-oxide (M = aluminum, gallium and indium) TiO2-M2O3 and cerium oxide-zirconium oxide solid solution. We used porous polymeric beads as templates. These beads used for chromatographic purposes. For the synthesis of TiO2-M2O3 we used metal- alkoxides as precursor. The pore of beads were filled with precursor and then reacted with water to give transformation of the precursor to amorphous oxide network. The network is crystallized and template is removed by heat treatment at high temperatures. In a similar way we obtained porous spheres of CexZr1-xO2. For this we synthesized nanoparticle of CexZr1-xO2 and used then for the templating process to obtain porous CexZr1-xO2 spheres.
Additionally, using the same nanoparticles we synthesized nano-porous powder using self-assembly process between a block-copolymers scaffold and nanoparticles.
Morphological and physico-chemical properties of these materials were studies systematically by using various analytical techniques
TiO2-M2O3 material were tested for photocatalytic degradation of 2-Chlorophenol a poisonous pollutant. While CexZr1-xO2 spheres were tested for methanol steam reforming reaction to generate hydrogen, which is a fuel for future generation power sources like fuel cells. All the materials showed good catalytic performance.
Silva, Manuel António Martins da. "Chemical preparation and properties of calcium phosphate based materials for biomedical applications". Master's thesis, Universidade de Aveiro, 2004. http://hdl.handle.net/10773/17672.
Pełny tekst źródłaCalcium phosphate-based materials, in particular hydroxyapatite-based ones,are among the most important materials for biomedical applications (bone graftsubstitutes, drug delivery systems, etc.). Owing to their compositional similaritywith respect to hard tissues, these materials show superior bioactive,osteoconductive, cell seeding and growth environment properties. Additionally,their capability to adsorb biological important substances like proteins, drugs,etc. makes them interesting materials to be used as drug delivery systems. Several studies on the effects of morphological aspects like particle size,shape, pore size and pore volume on the biological behaviour of calciumphosphate-based materials have shown that the properties of these materialscannot be considered merely on compositional aspects, but the role ofmorphological issues must also be taken into consideration. In the present work, calcium phosphate particles with a wide range of sizeswere produced by precipitation in calcium/citrate/phosphate solutions. It wasobserved that the manipulation of experimental conditions, namely the citrate-calcium ratio (Cit/Ca) and the pH of the solution, allowed to producehydroxyapatite particles either as nanosized particles, either as micrometricsized aggregates with particular shapes. The different sizes and shapes wereanalyzed in the framework of nucleation and growth phenomena and henceattributed to the development of different particle surface charge conditionsrelated to the adsorption of differently charged citrate species. The study of the preparation of calcium phosphate porous granules by spraydrying the suspensions of the various precipitated hydroxyapatite particles wasalso undertaken in the present work. The obtained results showed that thedifferent morphologies of the suspended hydroxyapatite particles havesignificant effects on the spray dried granules’ morphology and microstructure,thus accounting for different pore size and pore size distributions. Moreover,the study of the spray dried granules heat treatment demonstrated that not onlythe granules’porosity may be further modified but also its crystal phasecomposition. In view of the potential applications of the porous materialsprepared in this work such as drug, growth factors and stem cells carriers or aspromoter of cell adhesion, the present study points out to a wide range ofpossibilities for producing calcium phosphate porous granules with a differentschedule of morphological characteristics.
Os materiais fosfo-cálcicos, particularmente aqueles à base de hidroxiapatite, são dos mais importantes para aplicações biomédicas, como por exemplo, a substituição óssea e os sistemas de libertação controlada de fármacos. Este facto deve-se principalmente à semelhança da sua composição com a parte inorgânica do tecido ósseo. É esta semelhança que está na origem dasnotáveis propriedades biológicas destes materiais, tais como: excelente bioactividade e osteoconductividade. Por outro lado, estes materiais possuem ainda a capacidade de adsorver substâncias com interesse biológico,(proteínas, drogas, etc.) o que os torna interessantes como sistemas delibertação controlada de fármacos. No entanto, alguns estudos têmdemonstrado que o comportamento biológico dos materiais fosfo-cálcicos não depende apenas da sua composição mas também de aspectos morfológicos, tais como: tamanho e forma departícula, tamanho e volume de poro, etc. No presente trabalho produziram-se, por precipitação a partir de soluções de cálcio/citrato/fosfato, partículas de fosfato de cálcio com uma grandediversidade de tamanhos. Observou-se que a manipulação das condiçõesexperimentais, nomeadamente a razão citrato/cálcio (Cit/Ca) e o pH dasolução, possibilitaram a produção de partículas de hidroxiapatite, quer na forma de partículas com tamanhos nanométricos, quer na forma de agregados micrométricos com formas peculiares. A variedade de tamanhos e formas daspartículas produzidas foi analisado no contexto dos fenómenos de nucleação e crescimento, tendo sido atribuídaao desenvolvimento de diferentes condições de carga superficial devidas à adsorção de espécies iónicas de citrato com diferentes cargas. No presente trabalho desenvolveu-se também o estudo da preparação de grânulos porosos de fosfato de cálcio, por atomização de suspensões de partículas de hidroxiapatite com diferentes morfologias. Os resultados obtidosmostraram que a utilização de partículas com diferentes morfologias influenciasignificativamente a morfologia e microestrutura dos grânulos atomizados, oque origina grânulos com diferentes tamanhos e distribuição de tamanho deporos. Além disso, demonstrou-se que o tratamento térmico permite modificar não só a porosidade dos grânulos, mas também a sua composição cristalina.Tendo em vista as potenciais aplicações dos materiais porosos preparadosneste trabalho, tais como sistemas de libertação controlada de fármacos,factores de crescimento e de células estaminais ou como promotores daadesão de células, o presente trabalho sugere a possibilidade de produção de grânulos de fosfato de cálcio com uma vasta multiplicidade de características morfológicas.
Ko, Ying-hsiang. "The growth of metal particles in porous glass and the dielectric and optical properties of the composites /". The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487267024996737.
Pełny tekst źródłaDawson, Daniel M. "Combined theoretical and experimental investigations of porous crystalline materials". Thesis, University of St Andrews, 2014. http://hdl.handle.net/10023/7053.
Pełny tekst źródłaWollmann, Philipp, Matthias Leistner, Ulrich Stoeck, Ronny Grünker, Kristina Gedrich, Nicole Klein, Oliver Throl i in. "High-throughput screening: speeding up porous materials discovery". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-138648.
Pełny tekst źródłaDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Brunet, Gabriel. "Molecular Engineering of Metal-Organic Assemblies: Advances Toward Next Generation Porous and Magnetic Materials". Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40385.
Pełny tekst źródłaDeshmukh, A. A. "Synthesis, characterization and catalytic application of heterogenized transition metal complexes in solid porous materials". Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2007. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/2560.
Pełny tekst źródłaWollmann, Philipp, Matthias Leistner, Ulrich Stoeck, Ronny Grünker, Kristina Gedrich, Nicole Klein, Oliver Throl i in. "High-throughput screening: speeding up porous materials discovery". Royal Society of Chemistry, 2011. https://tud.qucosa.de/id/qucosa%3A27767.
Pełny tekst źródłaDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Dickinson, Calum. "Metal oxide porous single crystals and other nanomaterials : an HRTEM study". Thesis, University of St Andrews, 2007. http://hdl.handle.net/10023/217.
Pełny tekst źródłaFujiwara, Yu-ichi. "Synthesis and Formation Mechanism of Carbon Materials from Porous Coordination Polymers". Kyoto University, 2018. http://hdl.handle.net/2433/232058.
Pełny tekst źródłaLively, Jason M. "In Situ Ion Exchange in a Micro-porous Transition Metal Silicate Framework". TopSCHOLAR®, 2016. http://digitalcommons.wku.edu/theses/1730.
Pełny tekst źródłaKarra, Jagadeswarareddy. "Development of porous metal-organic frameworks for gas adsorption applications". Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/45751.
Pełny tekst źródłaSun, Xin. "Organofunctional silica mesostructures with improved accessibility and applications as heavy metal ion adsorbents". Diss., Connect to online resource - MSU authorized users, 2008.
Znajdź pełny tekst źródłaOhira, Koji. "Systematic survey of phosphate materials for lithium-ion batteries by first principle calculations". Master's thesis, 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/180500.
Pełny tekst źródłaLi, Yuan. "Synthesis and mechanical characterization of transversely isotropic nanoporous platinum". Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42927.
Pełny tekst źródłaHellman, Oskar. "Synthesis of framework porous sorbents using sustainable precursors". Thesis, Uppsala universitet, Nanoteknologi och funktionella material, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-445896.
Pełny tekst źródłaKlingstedt, Miia. "Characterizing cavity containing materials using electron microscopy : A study of metal oxides, mesoporous crystals and porous material containing nanosized metal-particles". Doctoral thesis, Stockholms universitet, Institutionen för material- och miljökemi (MMK), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-64164.
Pełny tekst źródłaAt the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 6: Submitted.
Williams, Christopher Bryant. "Design and development of a layer-based additive manufacturing process for the realization of metal parts of designed mesostructure". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22687.
Pełny tekst źródłaCommittee Co-Chair: David Rosen; Committee Co-Chair: Farrokh Mistree; Committee Member: David McDowell; Committee Member: Hamid Garmestani; Committee Member: Joe Cochran; Committee Member: Shreyes Melkote.
Young, Allison Patricia. "Using Lattice Engineering and Porous Materials Gating to Control Activity and Stability in Heterogeneous Catalysis". Thesis, Boston College, 2018. http://hdl.handle.net/2345/bc-ir:108207.
Pełny tekst źródłaHeterogeneous catalysis is a critical field for chemical industry processes, energy applications, and transportation, to name a few. In all avenues, control over the activity and selectivity towards specific products are of extreme importance. Generally, two separate methods can be utilized for controlling the active surface areas; a below and above the surface approach. In this dissertation, both approaches will be addressed, first starting with controlling the active sites from a below approach and moving towards control through sieving and gating effects above the surface. For the first part half, the control of the product selectivity is controlled by finely tuning the atomic structures of nanoparticle catalysts, mainly Au-Pd, Pd-Ni-Pt, and Pd Ni3Pt octahedral and cubic nanoparticle catalysts. Through these shaped core-shell, occasionally referred to as core@shell, particles the shape is maintained in order to expose and study certain crystal facets in order to obtain a more open or closed series of active sites. With the core shell particles, the interior core particle (Au and Pd) is used for the overall shape but also to expansively/compressively strain the outer shell layer. By straining the surface, the surface electronic structure is altered, by raising or lowering the d-band structure, allowing for reactants to adsorb more or less strongly as well as adsorb on different surface sites. For the below the surface projects, the synthesized nanoparticle catalyst are used for electrochemical oxidation reactions, such as ethanol and methanol oxidation, in order to study the effect of the core and shell layers on initial activity, metal migration during cycling, as well as particle stability and activity using different crystal structures. In particular, the use of core shell, alloyed, and intermetallic (ordered alloys) particles are studied in more detail. In the second half of this dissertation, control of the selectivity will be explored from the top down approach; in particular the use of metal organic framework (MOF) will be utilized. MOF, with its inherent size selective properties due to caging effects from the chosen linkers and nodes, is used to coat the surface of catalysts for gas, liquid, and electrochemical catalysis. By using nanoparticle catalyst, the use of MOF, more explicitly the robust zirconium based UiO-66, as a crystalline capping agent is first explored. By incorporating both the nanoparticle and UiO-66 amino functionalized precursors in the synthesis, the nanoparticles are formed first and followed by coating in UiO-66-NH2, where the amino group acts as an anchor, completely coating the particles. The full coating is tested through size selective alkene hydrogenations with the NP surface further tested by liquid phase selective aldehyde hydrogenations; the UiO-66-NH2 pores help to guide the reactant molecule in a particular orientation for the carbonyl to interact rather than the unsaturated C=C bond. This approach is taken for more complex hybrid structures for electrochemical proton exchange membrane fuel cell (PEMFC) conditions. Through the gating effects, the UiO-66 blocks the Pt surface active sites from poisonous sulfonate groups off of the ionomer membrane while simultaneously preventing aggregation and leaching of Pt atoms during electrochemical working conditions
Thesis (PhD) — Boston College, 2018
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Morabito, Joseph. "Kinetic Methods for Understanding Linker Exchange in Metal-Organic Frameworks". Thesis, Boston College, 2017. http://hdl.handle.net/2345/bc-ir:107593.
Pełny tekst źródłaExchange reactions have enabled a new level of control in the rational, stepwise preparation of metal-organic framework (MOF) materials. However, their full potential is limited by a lack of understanding of the molecular mechanisms by which they occur. This dissertation describes our efforts to understand this important class of reactions in two parts. The first reports our use of a linker exchange process to encapsulate guest molecules larger than the limiting pore aperture of the MOF. The concept is demonstrated, along with evidence for guest encapsulation and its relation to a dissociative linker exchange process. The second part describes our development of the first quantitative kinetic method for studying MOF linker exchange reactions and our application of this method to understand the solvent dependence of the reaction of ZIF-8 with imidazole. This project involved the collection of the largest set of rate data available on any MOF linker exchange reaction. The combination of this dataset with small molecule encapsulation experiments allowed us to formulate a mechanistic model that could account for all the observed kinetic and structural data. By comparison with the kinetic behavior of complexes in solution, we were able to fit the kinetic behavior of ZIF-8 into the broader family of coordination compounds. Aside from the specific use that our kinetic data may have in predicting the reactivity of ZIF linker exchange, we hope that the conceptual bridges made between MOFs and related metal−organic compounds can help reveal underlying patterns in behavior and advance the field
Thesis (PhD) — Boston College, 2017
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Vijwani, Hema. "Hierarchical Porous Structures with Aligned Carbon Nanotubes as Efficient Adsorbents and Metal-Catalyst Supports". Wright State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=wright1433350549.
Pełny tekst źródłaKothalawala, Kothalawalage Nuwan. "Nanoporous high surface area silicas with chelating groups for heavy metal ion adsorption from aqueous solution /". View online, 2010. http://repository.eiu.edu/theses/docs/32211131524422.pdf.
Pełny tekst źródłaHondow, Nicole S. "The synthesis of new heterogeneous Fischer-Tropsch catalysts : the incorporation of metal aggregates in mesoporous silicas". University of Western Australia. School of Biomedical, Biomolecular and Chemical Sciences, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0083.
Pełny tekst źródłaWiersum, Andrew. "Developing a strategy to evaluate the potential of new porous materials for the separation of gases by adsorption". Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4817/document.
Pełny tekst źródłaMetal-Organic Frameworks (MOFs) are seen to be one of the most promising classes of adsorbents for gas separations. Consisting of metal clusters connected by organic linkers to form a fully crystalline network, these materials have record breaking surface areas and pore volumes as well as a wide variety of pore structures and sizes. This, coupled with the possibility to use virtually any transition metal as well as functionalized linkers, gives MOFs the chemical and physical versatility often lacking in traditional adsorbents such as zeolites and activated carbons.The purpose of this study was to evaluate the potential of MOFs as adsorbents for four gas separations of interest to the petrochemical industry. Because of the diversity and number of MOFs available, a methodology was needed to help identify the most promising materials in each case. The proposed methodology comprises four stages: a screening step, an experimental step, a computational step and finally an evaluation step. For the first stage, a high-throughput setup was developed to measure rough adsorption isotherms. A number of materials were then selected for a more thorough investigation of their adsorption properties. Highly accurate isotherms were measured gravimetrically while precise adsorption enthalpies were obtained by microcalorimetry. Step three involved predicting the co-adsorption behaviour from the pure gas isotherms using the Ideal Adsorbed Solution Theory. Finally, the adsorbents were ranked based on a new selection parameter regrouping selectivity, working capacity and adsorption enthalpy where the importance of each term can be adjusted depending on the requirements of the process
Sanderyd, Viktor. "Novel Hybrid Nanomaterials : Combining Mesoporous Magnesium Carbonate with Metal-Organic Frameworks". Thesis, Uppsala universitet, Nanoteknologi och funktionella material, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-355366.
Pełny tekst źródłaWu, Qingliu. "SYNTHESIS AND ENERGY APPLICATIONS OF ORIENTED METAL OXIDE NANOPOROUS FILMS". UKnowledge, 2011. http://uknowledge.uky.edu/gradschool_diss/206.
Pełny tekst źródłaHaja, Mohideen Mohamed Infas. "Novel metal organic frameworks : synthesis, characterisation and functions". Thesis, University of St Andrews, 2011. http://hdl.handle.net/10023/1892.
Pełny tekst źródłaPally, Nitin Kumar. "Synthesis and Structures of New Three-Dimensional Copper Metal-Organic Frameworks". TopSCHOLAR®, 2013. http://digitalcommons.wku.edu/theses/1295.
Pełny tekst źródłaMcPherson, Matthew Joseph. "Control of water and toxic gas adsorption in metal-organic frameworks". Thesis, University of St Andrews, 2016. http://hdl.handle.net/10023/16489.
Pełny tekst źródłaLöfgren, Rebecka. "Metal ion adsorption of highly mesoporous magnesium carbonate". Thesis, Uppsala universitet, Nanoteknologi och funktionella material, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-388827.
Pełny tekst źródłaGonzalez-Santiago, Berenice. "Synthesis and properties of scandium carboxylate metal-organic frameworks". Thesis, University of St Andrews, 2015. http://hdl.handle.net/10023/6904.
Pełny tekst źródłaMohamed, Mona Hanafy. "Organic-Inorganic Hybrid Materials Based on Oxyanion Linkers for Selective Adsorption of Polarizable Gases". Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/5811.
Pełny tekst źródłaJohnson, Janine. "Thermomechanical modeling of porous ceramic-metal composites accounting for the stochastic nature of their microstructure". Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/33857.
Pełny tekst źródłaGlass, Joseph. "Modelling and optimisation of metal foam integrated heat exchangers for power electronics cooling". Thesis, Université Grenoble Alpes, 2021. http://www.theses.fr/2021GRALI007.
Pełny tekst źródłaSeveral decades ago, power electronics (PE) emerged as an important discipline in the world of electrical engineering. Thanks to regular technological advancements, namely the use of "wide band gap" materials for semiconductors, PE devices have become more compact and efficient, but this has unfortunately resulted in a reduced thermal management. Thus, as a collaborated effort between G2Elab, LEGI and SIMAP, this work has studied the use of metal foam as a novel heat exchanger used in a forced-convection cooling system that can be integrated into PE modules for superior cooling. Metal foams are lightweight, have low densities, high specific surface areas, an open-celled structure and good thermal properties. They are typically categorised by their porosity (ε), their pore density (PPI, pores per inch) and by the diameter of the solid fibres (df). The advantages to heat transfer arise from the possibility of an increased specific surface area over other heat exchangers, such as microchannels, and from the tortuous microstructure that generates flow turbulence and improves convective transfers within the coolant. Thermal performances were modelled by developing an analytical model that considered the heat exchangers as a network of resistances in series. This was achieved by simplifying the LTNE equations that govern energy transfer through the solid a fluid phases. The model was initially compared with numerical simulations and experimental results from the scientific literature, where it performed well. As an additional level of validation, an experimental test bench was designed and assembled in-house. Thermal performances was ascertained by using thermocouples to measure the temperature profile of the solid and fluid phases, and hydraulic properties were found by measuring the pressure drop across the heat exchangers. Analytical and experimental results agreed well with each other, deviating on average by less than 10%. The model was then used to optimise the foams physical properties in order to produce a heat exchanger that maximises thermal performances whilst minimising the required hydraulic power. The results show that for a pressure drop of 50kPa, the thermal resistance of a metal foam heat exchanger is 0.127 K/W. Metal foams are thus a viable heat exchanger material and the model proposed in this work can be used as a quick and inexpensive means of performance optimisation
Schoedel, Alexander. "[M3(μ3-O)(O2CR)6] and Related Trigonal Prisms: Versatile Molecular Building Blocks for 2-Step Crystal Engineering of Functional Metal-Organic Materials". Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5121.
Pełny tekst źródłaElsaidi, Sameh Khamis. "Crystal Engineering of Functional Metal-Organic Material Platforms for Gas Storage and Separation Applications". Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5417.
Pełny tekst źródła