Spis treści
Gotowa bibliografia na temat „Metal-Organic Polyhedron”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Metal-Organic Polyhedron”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Metal-Organic Polyhedron"
Lian, Ting-Ting, Shu-Mei Chen, Fei Wang i Jian Zhang. "Metal–organic framework architecture with polyhedron-in-polyhedron and further polyhedral assembly". CrystEngComm 15, nr 6 (2013): 1036–38. http://dx.doi.org/10.1039/c2ce26611c.
Pełny tekst źródłaKim, Hyehyun, Minhak Oh, Dongwook Kim, Jeongin Park, Junmo Seong, Sang Kyu Kwak i Myoung Soo Lah. "Single crystalline hollow metal–organic frameworks: a metal–organic polyhedron single crystal as a sacrificial template". Chemical Communications 51, nr 17 (2015): 3678–81. http://dx.doi.org/10.1039/c4cc10051d.
Pełny tekst źródłaPark, M., Y. Zou, S. Hong i M. S. Lah. "A designed metal-organic framework based on a metal-organic polyhedron". Acta Crystallographica Section A Foundations of Crystallography 64, a1 (23.08.2008): C474. http://dx.doi.org/10.1107/s0108767308084766.
Pełny tekst źródłaWu, Jian, Jing-Wen Xu, Wei-Cong Liu, Su-Zhen Yang, Miao-Miao Luo, Yao-Yao Han, Jian-Qiang Liu i Stuart R. Batten. "Designed metal–organic framework based on metal–organic polyhedron: Drug delivery". Inorganic Chemistry Communications 71 (wrzesień 2016): 32–34. http://dx.doi.org/10.1016/j.inoche.2016.06.023.
Pełny tekst źródłaZou, Yang, Mira Park, Seunghee Hong i Myoung Soo Lah. "A designed metal–organic framework based on a metal–organic polyhedron". Chemical Communications, nr 20 (2008): 2340. http://dx.doi.org/10.1039/b801103f.
Pełny tekst źródłaGuo, Xiangyu, Shanshan Xu, Yuxiu Sun, Zhihua Qiao, Hongliang Huang i Chongli Zhong. "Metal-organic polyhedron membranes for molecular separation". Journal of Membrane Science 632 (sierpień 2021): 119354. http://dx.doi.org/10.1016/j.memsci.2021.119354.
Pełny tekst źródłaLi, Mu, Mingxin Zhang, Yuyan Lai, Yuan Liu, Candice Halbert, James F. Browning, Dong Liu i Panchao Yin. "Solvated and Deformed Hairy Metal–Organic Polyhedron". Journal of Physical Chemistry C 124, nr 28 (19.06.2020): 15656–62. http://dx.doi.org/10.1021/acs.jpcc.0c05544.
Pełny tekst źródłaGong, Ya-Ru, Zhong-Min Su i Xin-Long Wang. "A polyoxometalate-based metal–organic polyhedron constructed from a {V5O9Cl} building unit with rhombicuboctahedral geometry". Acta Crystallographica Section C Structural Chemistry 74, nr 11 (16.10.2018): 1243–47. http://dx.doi.org/10.1107/s2053229618010689.
Pełny tekst źródłaMallick, Arijit, Bikash Garai, David Díaz Díaz i Rahul Banerjee. "Hydrolytic Conversion of a Metal-Organic Polyhedron into a Metal-Organic Framework". Angewandte Chemie 125, nr 51 (7.11.2013): 14000–14004. http://dx.doi.org/10.1002/ange.201307486.
Pełny tekst źródłaMallick, Arijit, Bikash Garai, David Díaz Díaz i Rahul Banerjee. "Hydrolytic Conversion of a Metal-Organic Polyhedron into a Metal-Organic Framework". Angewandte Chemie International Edition 52, nr 51 (7.11.2013): 13755–59. http://dx.doi.org/10.1002/anie.201307486.
Pełny tekst źródłaRozprawy doktorskie na temat "Metal-Organic Polyhedron"
Yan, Yong. "Metal-organic polyhedral framework materials for hydrogen storage". Thesis, University of Nottingham, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.555387.
Pełny tekst źródłaAlbalad, Alcalá Jorge. "Post-Synthetic Modification of Metal-Organic Frameworks (MOFs) and Polyhedra (MOPs)". Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/670090.
Pełny tekst źródłaEsta Tesis ha sido dedicada al diseño e implementación de nuevas técnicas de modificación post-sintética (PSM) aplicadas a material metalorgánicos, principalmente polímeros de coordinación (CPs), redes metalorgánicas (MOFs) y poliedros metalorgánicos (MOPS) , a fin de modificar sus propiedades fisicoquímicas a niveles inaccesibles a través de metodologías comunes de síntesis directa. La Tesis comienza ofreciendo una breve recapitulación bibliográfica del campo de los materiales metalorgánicos, desde sus inicios hasta su aplicación actual y perspectivas de futuro. Este capítulo engloba los conceptos más importantes sobre su síntesis y modificación post-sintética, tanto en sus nodos metálicos como en los ligandos orgánicos que construyen las redes; con un particular énfasis en las técnicas post-sintéticas desarrolladas hasta la fecha. Seguidamente, la Tesis es dividida en cuatro capítulos extra, donde cada uno de ellos se enfoca en un proceso de modificación post-sintética concreto. Inicialmente, la Tesis se centra en la modificación post-sintética de las subunidades metálicas de polímeros de coordinación basados en ligando macrocíclicos. La presencia de una fuente de iones metálicos quelatados dentro de la cavidad macrocíclicos los ligandos induce una transición de fase de monocristal monocristal en contacto con agua, obteniendo una distribución regular de subunidades; rueda de paletas (paddlewheel) bimetálica en la red. Esta transición de fase es seguida a través de difracción de monocristal, así como a través de técnicas de caracterización espectroscópicas y magnéticas. En el siguiente capítulo se postula una técnica de modificación post-sintética hasta ahora inexplorada en el campo de los materiales metalorgánicos. Gracias a su microporosidad intrínseca, los MOF pueden difundir gases altamente reactivos a través de su red, lo que puede inducir potencialmente una modificación post-sintética a través de reacciones sólido-gas en cuestión de minutos. Para probar esta hipótesis, un MOF decorado con funcionalidades olefina se hizo reaccionar difundiendo ozono a través de su red. El producto de reacción obtenido presenta clara evidencia de tener dentro de sus canales de reacción del esperado intermedio de reacción para la reacción de ozonólisis, teóricamente inestable. Este intermedio puede ser convertido en un paso posterior a grupos aldehído o ácido carboxílico de forma quimiselectiva. Todo el proceso es caracterizado por técnicas de resonancia magnética nuclear (RMN) y difracción de monocristal. Finalmente, el conocimiento adquirido en la modificación post-sintética de CPs y MOFs se traslada al campo de los materiales cero-dimensionales. Concretamente, esta Tesis demuestra cómo poliedros metalorgánicos (MOPS) de rodio pueden ser modificados en su periferia a través de química de coordinación y covalente, modificando así sus propiedades fisicoquímicas (solubilidad) sin afectar a su integridad estructural. Esta modificación post-sintética obra nuevos caminos hacia la explotación práctica de estos materiales, ya que debido a su estructura finita los MOPS pueden ser vistos como nanopartículas estequiométricamente funcionalizadas con solubilidad tuneable. Esta modificación post-sintética permite además introducido grupos funcionales en la periferia de los MOPS que no pueden ser incorporados en síntesis directa. Así, a través de un proceso en dos pasos, MOPS con 24 grupos amino o ácido carboxílico son sintetizados. Ambos grupos presentan objetivamente una de las químicas más ricas en química covalente o de coordinación, respectivamente, lo que abre nuevas fronteras para la aplicación de estas nanoplataformas.
The disserted Ph.D. Thesis was dedicated to the design and implementation of new post-synthetic modification (PSM) techniques to porous metal-organic materials, namely Coordination Polymers (CPs), Metal-Organic Frameworks (MOFs) and Metal-Organic Polyhedra (MOPs), in order to modify their physicochemical properties to inaccessible levels by common direct synthesis methodologies. The Thesis starts offering a brief bibliographic review of the evolution of metal-organic materials field, from their beginnings up to their actual applications and future perspectives. This chapter presents the most relevant concepts in their synthesis and their potential PSM, both in the metallic nodes or in the organic linkers that assemble the framework; with particular emphasis on the post-synthetic methodologies exploited up to date. Next, the Thesis is divided in four extra Chapters, each of them corresponding to a specific post-synthetic modification process. Initially, the Thesis focuses on the post-synthetic modification of the metallic subunits of macrocycle-based CPs. The presence of a second source of metal ions quelated inside the macrocyclic cavity induces a single-crystal-to-single-crystal phase transition in contact with water, obtaining a regular distribution of bimetallic paddlewheel subunits within the framework. Such transition was studied by single-crystal X-Ray diffraction techniques, as well as spectroscopic and magnetic characterization techniques. Next, an unexplored pathway for the PSM of MOFs is postulated. Thanks to their nanoporous structure, MOFs can diffuse highly-reactive gases through their framework in order to modify their structure through solid-gas reactions in a matter of minutes. To this end, an olefin-tagged MOF is post-synthetically modified by diffusing ozone gas through the porous channels of the material. The as-obtained reaction intermediate can be chemoselectively converted to either aldehyde or carboxylic acid groups without affecting the crystalline integrity of the material. The whole two-step process is characterized by Nuclear Magnetic Resonance (NMR) techniques, as well as single-crystal X-Ray diffraction. Afterwards, the post-synthetic modification of metal-organic architectures is extended to zero-dimensional materials. Concretely, it is demonstrated how the surface functionalization of Rhodium (II)-based Metal-Organic Polyhedra, both through coordination or covalent chemistries, is able to tune their solubility within a wide range of solvents, without affecting the scaffold’s integrity. This post-modification opens up new pathways for exploiting these materials. Because of their finite structure, MOPs can be seen as stoichiometrically-functionalized nanoparticles with tunable solubility. Such acquired knowledge is then applied to expand the available roster of Rh(II)-based MOPs. Through a two-step protection/deprotection strategy, two unprecedented Rh-MOPs with 24 free carboxylate or amino groups on their periphery are synthesized, unobtainable by direct synthesis methodologies. Both groups arguably present one of the richest chemistries in coordination and covalent chemistry, respectively, thus opening new pathways and frontiers towards the application of these materials.
Stoeck, Ulrich, Irena Senkoska, Volodymyr Bon, Simon Krause i Stefan Kaskel. "Assembly of metal–organic polyhedra into highly porous frameworks for ethene delivery". Royal Society of Chemistry, 2015. https://tud.qucosa.de/id/qucosa%3A36046.
Pełny tekst źródłaMeng, Wenjing. "Metal-organic polyhedra : subcomponent self-assembly, structural properties, host-guest behavior and system chemistry". Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610719.
Pełny tekst źródłaPerry, John Jackson. "Hierarchical complexity in metal-organic materials : from layers to polyhedra to supermolecular building blocks". [Tampa, Fla] : University of South Florida, 2009. http://purl.fcla.edu/usf/dc/et/SFE0003227.
Pełny tekst źródłaTonigold, Markus [Verfasser]. "Novel copper- and cobalt-based metal-organic polyhedra and frameworks : synthesis, structure, properties and applications / Markus Stefan Tonigold". Ulm : Universität Ulm. Fakultät für Naturwissenschaften, 2012. http://d-nb.info/1019563249/34.
Pełny tekst źródłaTessarolo, J. "Design and synthesis of metallo-supramolecular architectures towards advanced materials". Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3422402.
Pełny tekst źródłaL’auto-assemblaggio, ovvero l’organizzazione spontanea e reversibile di componenti preesistenti in strutture supramolecolari, è un processo che può essere utilizzato per la preparazione di sistemi con proprietà funzionali, tramite. Nello specifico, tramite auto-assemblaggio di ioni metallici e leganti politopici è possibile generare una particolare classe di materiali funzionali supramolecolari: poligoni e poliedri metallo-organici dotati di tasche e spazi confinati di dimensione molecolare. In questo lavoro viene dapprima presentato un sistema basato su Cu(II) e un legante bis-β-dichetonato. In soluzione i componenti si auto-assemblano in una serie di box supramolecolari: un dimero ed un trimero in equilibrio dinamico tra loro. Questo sistema è una piccola libreria costituzionale dinamica (CDL). L’equilibrio tra i due costituenti della CDL può essere orchestrato tramite l’introduzione di piccole molecole che, venendo accomodate nella tasca molecolare della specie trimerica, riescono a selezionarla tramite interazioni di tipo host-guest. Questo sistema si è un eccellente modello per studiare la reattività di piccole molecole ospitate in spazi confinati. In questo lavoro sono presentati due esempi di reattività di piccole molecole ospitate nella tasca triangolare: un ossidazione in condizioni blande e la rottura selettiva di un legame C-N. Queste reazioni sono state studiate con una combinazione di spettroscopia FT-IR, UV-Vis e diffrazione a raggi X su cristallo singolo In seguito, è stata sviluppata la sintesi di due nuove librerie di leganti, una serie di leganti bis-β-dichetoni e una serie di leganti tris-β-dichetoni, progettati specificatamente per poter formare capsule metallo-supramolecolari. La reazione di questi leganti con metalli di transizione e con ioni lantanoidi porta alla formazione di poliedri metallo-organici. Nello specifico, l’auto-assemblaggio dei leganti tris-β-dichetoni con lo ione Fe3+ porta alla formazione di tetraedri supramolecolari, di formula generale Fe4L4. Tali capsule sono caratterizzate dalla presenza di tasche di dimensioni sufficienti a contenere piccole molecole. La struttura delle capsule tetraedriche è stata confermata tramite diffrazione a raggi X su cristallo singolo. L’auto-assemblaggio dei leganti bis-β-dichetoni con lo ione Eu3+ porta alla formazione di una serie di capsule dimeriche che possono essere cariche negativamente ([Eu2L4]2-¬) oppure neutre ([Eu2L3]). Questo sistema presenta proprietà funzionali: la luminescenza dello ione lantanoide è attivata tramite effetto antenna indotto dal legante. La formazione di queste capsule metallo-supramolecolari luminescenti è stata studiata tramite spettrometria ESI-MS e spettroscopia 1H-NMR. Infine sono state caratterizzate le proprietà di fotoluminescenza (emissione e rese quantiche) dei sistemi [Eu2L4]2-¬.
Stoeck, Ulrich, Simon Krause, Volodymyr Bon, Irena Senkovska i Stefan Kaskel. "A highly porous metal–organic framework, constructed from a cuboctahedral super-molecular building block, with exceptionally high methane uptake". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-138864.
Pełny tekst źródłaDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Stoeck, Ulrich, Simon Krause, Volodymyr Bon, Irena Senkovska i Stefan Kaskel. "A highly porous metal–organic framework, constructed from a cuboctahedral super-molecular building block, with exceptionally high methane uptake". Royal Society of Chemistry, 2012. https://tud.qucosa.de/id/qucosa%3A27787.
Pełny tekst źródłaDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Vetromile, Carissa Marie. "Probing Molecules in Confined Space". Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/3393.
Pełny tekst źródłaCzęści książek na temat "Metal-Organic Polyhedron"
"The Polytopes of the Higher Dimension in Physics and Chemistry and Construction of Spaces of the Higher Dimension". W The Classes of Higher Dimensional Polytopes in Chemical, Physical, and Biological Systems, 254–92. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-8374-6.ch009.
Pełny tekst źródła"Condensation of WO42- Polyhedra Units on Layered Rare Earth Hydroxides Nanosheets: Hierarchical Channels and Heavy Metal Adsorption". W Metal-Organic Framework Composites - Volume I, 122–39. Materials Research Forum LLC, 2019. http://dx.doi.org/10.21741/9781644900291-6.
Pełny tekst źródła