Gotowa bibliografia na temat „Metal-metal charge transfer”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Metal-metal charge transfer”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Metal-metal charge transfer"
Lind, Thomas, i Hermann Bank. "Effect of Ligand Metal Charge Transfer and Intravalence Charge Transfer Bands on the Colour of Grossular Garnet". Neues Jahrbuch für Mineralogie - Monatshefte 1997, nr 1 (26.03.1997): 1–14. http://dx.doi.org/10.1127/njmm/1997/1997/1.
Pełny tekst źródłaLabadz, A. F., i J. Lowell. "Charge transfer across metal-SiO2interfaces". Journal of Physics D: Applied Physics 24, nr 8 (14.08.1991): 1416–21. http://dx.doi.org/10.1088/0022-3727/24/8/028.
Pełny tekst źródłaLachinov, A. N., T. G. Zagurenko, V. M. Kornilov, A. I. Fokin, I. V. Aleksandrov i R. Z. Valiev. "Charge transfer in a metal-polymer-nanocrystalline metal system". Physics of the Solid State 42, nr 10 (październik 2000): 1935–41. http://dx.doi.org/10.1134/1.1318890.
Pełny tekst źródłaAkande, A. R., i J. Lowell. "Charge transfer in metal/polymer contacts". Journal of Physics D: Applied Physics 20, nr 5 (14.05.1987): 565–78. http://dx.doi.org/10.1088/0022-3727/20/5/002.
Pełny tekst źródłaLiu, Tao, Yan-Juan Zhang, Shinji Kanegawa i Osamu Sato. "Photoinduced Metal-to-Metal Charge Transfer toward Single-Chain Magnet". Journal of the American Chemical Society 132, nr 24 (23.06.2010): 8250–51. http://dx.doi.org/10.1021/ja1027953.
Pełny tekst źródłaZhao, Jianjun, Matthias Wasem, Christopher R. Bradbury i David J. Fermín. "Charge Transfer across Self-Assembled Nanoscale Metal−Insulator−Metal Heterostructures". Journal of Physical Chemistry C 112, nr 18 (15.04.2008): 7284–89. http://dx.doi.org/10.1021/jp7101644.
Pełny tekst źródłaGlass, Elliot N., John Fielden, Zhuangqun Huang, Xu Xiang, Djamaladdin G. Musaev, Tianquan Lian i Craig L. Hill. "Transition Metal Substitution Effects on Metal-to-Polyoxometalate Charge Transfer". Inorganic Chemistry 55, nr 9 (15.04.2016): 4308–19. http://dx.doi.org/10.1021/acs.inorgchem.6b00060.
Pełny tekst źródłaChisholm, Malcolm H. "Charge distribution in metal to ligand charge transfer states of quadruply bonded metal complexes". Coordination Chemistry Reviews 282-283 (styczeń 2015): 60–65. http://dx.doi.org/10.1016/j.ccr.2014.03.034.
Pełny tekst źródłaJiang, Wenjing, Chengqi Jiao, Yinshan Meng, Liang Zhao, Qiang Liu i Tao Liu. "Switching single chain magnet behaviorviaphotoinduced bidirectional metal-to-metal charge transfer". Chemical Science 9, nr 3 (2018): 617–22. http://dx.doi.org/10.1039/c7sc03401f.
Pełny tekst źródłaRogers, David M., i J. Olof Johansson. "Metal-to-metal charge-transfer transitions in Prussian blue hexacyanochromate analogues". Materials Science and Engineering: B 227 (styczeń 2018): 28–38. http://dx.doi.org/10.1016/j.mseb.2017.10.003.
Pełny tekst źródłaRozprawy doktorskie na temat "Metal-metal charge transfer"
Schirra, Laura Kristy. "Charge Transfer at Metal Oxide/Organic Interfaces". Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/217090.
Pełny tekst źródłaGregory, David. "Charge transfer studies of alkali-metal/semiconductor interfaces". Thesis, University of Liverpool, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240051.
Pełny tekst źródłaSiles, P. F., T. Hahn, G. Salvan, M. Knupfer, F. Zhu, D. R. T. Zahn i O. G. Schmidt. "Tunable charge transfer properties in metal-phthalocyanine heterojunctions". Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-219903.
Pełny tekst źródłaDieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Rusu, Paul Constantin. "Charge transfer and dipole formation at metal-organic interfaces". Enschede : University of Twente [Host], 2007. http://doc.utwente.nl/58034.
Pełny tekst źródłaDing, Bowen. "Localised Charge Transfer in Metal-Organic Frameworks for Catalysis". Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/19852.
Pełny tekst źródłaNewton, Angus William. "Charge transfer and disorder broadening in disordered transition metal alloys". Thesis, University of Liverpool, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343931.
Pełny tekst źródłaCai, Meng. "Investigation of Charge Transfer in Metal-Organic Frameworks for Electrochemical Applications". Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/97400.
Pełny tekst źródłaDoctor of Philosophy
The increasing demand for clean and efficient energy has triggered a great deal of research interest in developing novel energy conversion and storage technologies. In particular, electrochemical (EC) systems including supercapacitors, Lithium-ion batteries, artificial photosynthetic system, fuel cells, etc. have drawn significant attention. The key component in high-performance EC energy conversion and storage devices is the functional electrode materials. Three-dimensional (3D) porous nanostructures have been widely applied as advanced electrode materials due to their high surface area that enables more liquid/solid interfacial interactions, and pores/channels that allows efficient mass diffusion and transport. Metal-organic frameworks (MOFs), made of organic ligands bridged by inorganic nodes, are a novel kind of porous materials with extraordinarily high surface area and permanent porosity. As a result, there is great potential in developing MOF-based electrode materials for EC applications. As the name itself suggests, EC systems rely on electrochemical reactions that involve transfer of charges (i.e. electrons and ions). Therefore, efficient charge transfer is vital for achieving high performance. While MOFs used for gas separation and storage have been reported, their electrochemical applications are still in early stages. The fundamental understanding of charge transfer in MOFs is in its infancy. As a result, there is an urgent demand for understanding the nature of charge transfer in MOFs. In this dissertation, we investigated the mechanism of charge transfer by independent quantification of electron and ion transfer rate constants. With a better understanding in hand, we also explored two electrochemical applications in MOFs, electrocatalysis and electrogenerated chemiluminescence.
唐素明 i So-ming Glenna Tong. "Theoretical studies of transition metal containing diatomics and DNA electron transfer". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B31244828.
Pełny tekst źródłaForker, Roman. "Electronic Coupling Effects and Charge Transfer between Organic Molecules and Metal Surfaces". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-26163.
Pełny tekst źródłaZur Analyse der Struktur-Eigenschafts-Beziehungen dünner, epitaktischer Molekülfilme wird in situ differentielle Reflexionsspektroskopie (DRS) als Variante der optischen Absorptionsspektroskopie verwendet. Klare Zusammenhänge zwischen den Spektren und der unterschiedlich starken Kopplung zum jeweiligen Substrat werden gefunden. Während man breite und beinahe unstrukturierte Spektren für eine Quaterrylen (QT) Monolage auf Au(111) erhält, ist die spektrale Form von auf Graphit abgeschiedenem QT ähnlich der isolierter Moleküle. Durch Einfügen einer atomar dünnen organischen Zwischenschicht bestehend aus Hexa-peri-hexabenzocoronen (HBC) mit einem deutlich unterschiedlichen elektronischen Verhalten gelingt sogar eine effiziente elektronische Entkopplung vom darunter liegenden Au(111). Diese Ergebnisse werden durch systematische Variation der Metallsubstrate (Au, Ag und Al), welche von inert bis sehr reaktiv reichen, untermauert. Zu diesem Zweck wird 3,4,9,10-Perylentetracarbonsäuredianhydrid (PTCDA) gewählt, um Vergleichbarkeit der molekularen Filmstrukturen zu gewährleisten, und weil dessen elektronische Anordnung auf verschiedenen Metalloberflächen bereits eingehend untersucht worden ist. Wir weisen ionisiertes PTCDA an einigen dieser Grenzflächen nach und schlagen vor, dass der Ladungsübergang mit der elektronischen Niveauanpassung zusammenhängt, welche mit der Ausbildung von Grenzflächendipolen auf den entsprechenden Metallen einhergeht
Chun, Young Tea. "Charge transfer characteristic of zinc oxide nanowire devices and their applications". Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708978.
Pełny tekst źródłaKsiążki na temat "Metal-metal charge transfer"
Ardelean, Jenny V. Optical Characterization of Charge Transfer Excitons in Transition Metal Dichalcogenide Heterostructures. [New York, N.Y.?]: [publisher not identified], 2019.
Znajdź pełny tekst źródłaKrumbein, Ulrich. Simulation of carrier generation in advanced silicon devices. Konstanz: Hartung-Gorre, 1996.
Znajdź pełny tekst źródłaAnderson, Kim A. Kinetics of outer-sphere electron transfer reactions in non-aqueous solvents. 1989.
Znajdź pełny tekst źródłaGribble, Jacquelin D. Kinetics of outer-sphere electron transfer reactions in non-aqueous solutions. 1989.
Znajdź pełny tekst źródłaLaunay, Jean-Pierre, i Michel Verdaguer. The excited electron: photophysical properties. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814597.003.0004.
Pełny tekst źródłaHuster, Carl R. A parallel/vector Monte Carlo MESFET model for shared memory machines. 1992.
Znajdź pełny tekst źródłaCzęści książek na temat "Metal-metal charge transfer"
Stufkens, D. J., A. Oskam i M. W. Kokkes. "Metal-Ligand Charge Transfer Photochemistry". W ACS Symposium Series, 66–84. Washington, DC: American Chemical Society, 1986. http://dx.doi.org/10.1021/bk-1986-0307.ch006.
Pełny tekst źródłaFialko, N. S., i V. D. Lakhno. "Charge Transfer in DNA-Metal-Ligand Complexes. Polynucleotides". W Metal-Ligand Interactions, 453–59. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0191-5_20.
Pełny tekst źródłaLakhno, V. D. "Charge Transfer in DNA-Metal-Ligand Complexes. Oligonucleotides". W Metal-Ligand Interactions, 571–84. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0191-5_24.
Pełny tekst źródłaKaim, W., F. M. Hornung, R. Schäfer, J. Fiedler, M. Krejcik i S. Zališ. "Charge Transfer Phenomena in Transition Metal Sulphur Chemistry". W Transition Metal Sulphides, 37–55. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-3577-3_2.
Pełny tekst źródłaLuo, Zhixun, i Shiv N. Khanna. "Charge Transfer and the Harpoon Mechanism". W Metal Clusters and Their Reactivity, 193–213. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9704-6_12.
Pełny tekst źródłaVogler, A., i H. Kunkely. "Charge Transfer Excitation of Coordination Compounds. Generation of Reactive Intermediates". W Catalysis by Metal Complexes, 71–111. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-2626-9_4.
Pełny tekst źródłaChen, Anthony L., i Peter Y. Yu. "Charge-Transfer Gap Closure in Transition-Metal Halides Under Pressure". W The Kluwer International Series in Engineering and Computer Science, 349–61. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0461-6_25.
Pełny tekst źródłaGeyer, W., Th Ochs, C. Krummel, M. Fleischer, H. Meixner i D. Kohl. "Surface Reactions at Metal Oxides: Relaxation Spectroscopy and Charge Transfer". W Advanced Gas Sensing - The Electroadsorptive Effect and Related Techniques, 41–53. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-8612-2_2.
Pełny tekst źródłaDutton, Gregory, i X. Y. Zhu. "Charge Transfer at Molecule—Metal Interfaces: Implication for Molecular Electronics". W ACS Symposium Series, 76–86. Washington, DC: American Chemical Society, 2003. http://dx.doi.org/10.1021/bk-2003-0844.ch007.
Pełny tekst źródłaLoukova, Galina V. "Ligand-to-Metal Charge Transfer Excited States in Organometallic Compounds". W Springer Handbook of Inorganic Photochemistry, 459–92. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-63713-2_19.
Pełny tekst źródłaStreszczenia konferencji na temat "Metal-metal charge transfer"
PHILLIPS, D. L., K. H. LEUNG, C. M. CHE, M. C. TSE i V. M. MISKOWSKI. "RESONANCE RAMAN INVESTIGATION OF METAL-METAL BONDING INTERACTIONS IN METAL-METAL CHARGE TRANSFER TRANSITIONS OF DINUCLEAR INORGANIC COMPLEXES". W Proceedings of the Third Joint Meeting of Chinese Physicists Worldwide. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776785_0071.
Pełny tekst źródłaSchmuttenmaer, C. A., J. Cao, M. A. Aeschlimann, H. E. Elsayed-Ali, Y. Gao, R. J. D. Miller i D. A. Mantell. "Photoexcited charge transfer to adsorbates at metal surfaces". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/oam.1993.thddd.4.
Pełny tekst źródłaSaito, Yoko, Mariko Miyazaki, Tomio Iwasaki, Naoya Sasaki, Hongmei Jin, Michael B. Sullivan i Ping Wu. "Force-field with Charge Transfer and Classical Molecular Dynamics Study for Metal-/Metal Oxide/Polyimide Interfaces". W 2008 MRS Fall Meetin. Materials Research Society, 2008. http://dx.doi.org/10.1557/proc-1115-h08-02.
Pełny tekst źródłaJece, Annija, Armands Ruduss, Kitija A. Štucere, Aivars Vembris i Kaspars Traskovskis. "TADF active carbene-metal-amide complexes exhibiting through-space charge transfer: an impact of metal atom". W Organic Electronics and Photonics: Fundamentals and Devices III, redaktorzy Sebastian Reineke, Koen Vandewal i Wouter Maes. SPIE, 2022. http://dx.doi.org/10.1117/12.2621156.
Pełny tekst źródłaOrman, L. K., D. R. Anderson i J. B. Hopkins. "Direct structural characterization of charge localization in metal to ligand charge transfer complexes". W AIP Conference Proceedings Volume 172. AIP, 1988. http://dx.doi.org/10.1063/1.37523.
Pełny tekst źródłaCastaing, V., L. Li, D. Rytz, Y. Katayama, A. D. Sontakke, S. Tanabe, M. Peng i B. Viana. "Metal-to-metal charge transfer band position control and luminescence quenching by cationic substitution in NaNbO3:Pr3+". W SPIE OPTO, redaktorzy Shibin Jiang i Michel J. F. Digonnet. SPIE, 2017. http://dx.doi.org/10.1117/12.2253177.
Pełny tekst źródłaStefancu, Andrei, Seunghoon Lee, Zhu Li, Min Liu, Raluca Ciceo-Lucacel, Nicolae Leopold i Emiliano Cortes. "Metal-molecule charge transfer through Fermi level equilibration in plasmonic systems". W 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2021. http://dx.doi.org/10.1109/cleo/europe-eqec52157.2021.9542635.
Pełny tekst źródłaZhao, Lianfeng, YunHui L. Lin i Barry P. Rand. "Charge-transfer states at 2D metal halide perovskite/organic heterojunctions (Conference Presentation)". W Physical Chemistry of Semiconductor Materials and Interfaces XVII, redaktorzy Hugo A. Bronstein i Felix Deschler. SPIE, 2018. http://dx.doi.org/10.1117/12.2320314.
Pełny tekst źródłaSieland, Fabian, Jenny Schneider, Thorsten Lippmann i Detlef W. Bahnemann. "Understanding charge transfer processes on metal oxides: a laser-flash-photolysis study". W SPIE Optics + Photonics for Sustainable Energy, redaktor Chung-Li Dong. SPIE, 2016. http://dx.doi.org/10.1117/12.2239261.
Pełny tekst źródłaNoel, Nakita K. "Interfacial Charge-transfer Doping of Metal Halide Perovskites for High Performance Optoelectronics". W 11th International Conference on Hybrid and Organic Photovoltaics. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.hopv.2019.091.
Pełny tekst źródłaRaporty organizacyjne na temat "Metal-metal charge transfer"
Baker, Lawrence Robert. Charge Transfer and Catalysis at the Metal Support Interface. Office of Scientific and Technical Information (OSTI), lipiec 2012. http://dx.doi.org/10.2172/1174166.
Pełny tekst źródłaChen, A. L., i P. Y. Yu. Charge-transfer gap closure in transition-metal halides under pressure. Office of Scientific and Technical Information (OSTI), styczeń 1995. http://dx.doi.org/10.2172/69161.
Pełny tekst źródłaChen, Anthony Li-Chung. Metallization and charge-transfer gap closure of transition-metal iodides under pressure. Office of Scientific and Technical Information (OSTI), maj 1993. http://dx.doi.org/10.2172/10182378.
Pełny tekst źródłaArmstrong, Neal, S. Scott Saavedra i Jeffrey Pyun. Metal-Tipped and Electrochemically Wired Semiconductor Nanocrystals: Modular Constructs for Directed Charge Transfer. Office of Scientific and Technical Information (OSTI), sierpień 2022. http://dx.doi.org/10.2172/1882419.
Pełny tekst źródłaBarefoot, Susan F., Bonita A. Glatz, Nathan Gollop i Thomas A. Hughes. Bacteriocin Markers for Propionibacteria Gene Transfer Systems. United States Department of Agriculture, czerwiec 2000. http://dx.doi.org/10.32747/2000.7573993.bard.
Pełny tekst źródłaHodul, M., H. P. White i A. Knudby. A report on water quality monitoring in Quesnel Lake, British Columbia, subsequent to the Mount Polley tailings dam spill, using optical satellite imagery. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330556.
Pełny tekst źródłaFINITE ELEMENT SIMULATION FOR ULTRA-HIGH-PERFORMANCE CONCRETE-FILLED DOUBLE-SKIN TUBES EXPOSED TO FIRE. The Hong Kong Institute of Steel Construction, sierpień 2022. http://dx.doi.org/10.18057/icass2020.p.263.
Pełny tekst źródłaThe Competitive Advantage of Nations: A Successful Experience, Realigning the Strategy to Transform the Economic and Social Development of the Basque Country. Universidad de Deusto, 2015. http://dx.doi.org/10.18543/xiqr3861.
Pełny tekst źródła