Artykuły w czasopismach na temat „Metal insulator transition”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Metal insulator transition.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Metal insulator transition”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Schlottmann, P., i C. S. Hellberg. "Metal-insulator transition in dirty Kondo insulators". Journal of Applied Physics 79, nr 8 (1996): 6414. http://dx.doi.org/10.1063/1.362014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Malinenko, V. P., L. A. Aleshina, A. L. Pergament i G. V. Germak. "Switching Effects and Metal−Insulator Transition in Manganese Oxide". Journal on Selected Topics in Nano Electronics and Computing 1, nr 1 (grudzień 2013): 44–50. http://dx.doi.org/10.15393/j8.art.2013.3005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

CHEN, DONG-MENG, i LIANG-JIAN ZOU. "ORBITAL INSULATORS AND ORBITAL ORDER–DISORDER INDUCED METAL–INSULATOR TRANSITION IN TRANSITION-METAL OXIDES". International Journal of Modern Physics B 21, nr 05 (20.02.2007): 691–706. http://dx.doi.org/10.1142/s0217979207036618.

Pełny tekst źródła
Streszczenie:
The role of orbital ordering on metal–insulator transition in transition-metal oxides is investigated by the cluster self-consistent field approach in the strong correlation regime. A clear dependence of the insulating gap of single-particle excitation spectra on the orbital order parameter is found. The thermal fluctuation drives the orbital order–disorder transition, diminishes the gap and leads to the metal–insulator transition. The unusual temperature dependence of the orbital polarization in the orbital insulator is also manifested in the resonant X-ray scattering intensity.
Style APA, Harvard, Vancouver, ISO itp.
4

Lee, D., B. Chung, Y. Shi, G. Y. Kim, N. Campbell, F. Xue, K. Song i in. "Isostructural metal-insulator transition in VO2". Science 362, nr 6418 (29.11.2018): 1037–40. http://dx.doi.org/10.1126/science.aam9189.

Pełny tekst źródła
Streszczenie:
The metal-insulator transition in correlated materials is usually coupled to a symmetry-lowering structural phase transition. This coupling not only complicates the understanding of the basic mechanism of this phenomenon but also limits the speed and endurance of prospective electronic devices. We demonstrate an isostructural, purely electronically driven metal-insulator transition in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide. A combination of thin-film synthesis, structural and electrical characterizations, and theoretical modeling reveals that an interface interaction suppresses the electronic correlations without changing the crystal structure in this otherwise correlated insulator. This interaction stabilizes a nonequilibrium metallic phase and leads to an isostructural metal-insulator transition. This discovery will provide insights into phase transitions of correlated materials and may aid the design of device functionalities.
Style APA, Harvard, Vancouver, ISO itp.
5

Milligan, R. F., i G. A. Thomas. "The Metal-Insulator Transition". Annual Review of Physical Chemistry 36, nr 1 (październik 1985): 139–58. http://dx.doi.org/10.1146/annurev.pc.36.100185.001035.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Wang, Hangdong, Jinhu Yang, Qi Li, Zhuan Xu i Minghu Fang. "Metal–insulator transition in". Physica B: Condensed Matter 404, nr 1 (styczeń 2009): 52–54. http://dx.doi.org/10.1016/j.physb.2008.10.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Harigaya, Kikuo. "Metal-insulator transition inC60polymers". Physical Review B 52, nr 11 (15.09.1995): 7968–71. http://dx.doi.org/10.1103/physrevb.52.7968.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Tsurubayashi, M., K. Kodama, M. Kano, K. Ishigaki, Y. Uwatoko, T. Watanabe, K. Takase i Y. Takano. "Metal-insulator transition in Mott-insulator FePS3". AIP Advances 8, nr 10 (październik 2018): 101307. http://dx.doi.org/10.1063/1.5043121.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Weidemann, Sebastian, Mark Kremer, Stefano Longhi i Alexander Szameit. "Topological triple phase transition in non-Hermitian Floquet quasicrystals". Nature 601, nr 7893 (19.01.2022): 354–59. http://dx.doi.org/10.1038/s41586-021-04253-0.

Pełny tekst źródła
Streszczenie:
AbstractPhase transitions connect different states of matter and are often concomitant with the spontaneous breaking of symmetries. An important category of phase transitions is mobility transitions, among which is the well known Anderson localization1, where increasing the randomness induces a metal–insulator transition. The introduction of topology in condensed-matter physics2–4 lead to the discovery of topological phase transitions and materials as topological insulators5. Phase transitions in the symmetry of non-Hermitian systems describe the transition to on-average conserved energy6 and new topological phases7–9. Bulk conductivity, topology and non-Hermitian symmetry breaking seemingly emerge from different physics and, thus, may appear as separable phenomena. However, in non-Hermitian quasicrystals, such transitions can be mutually interlinked by forming a triple phase transition10. Here we report the experimental observation of a triple phase transition, where changing a single parameter simultaneously gives rise to a localization (metal–insulator), a topological and parity–time symmetry-breaking (energy) phase transition. The physics is manifested in a temporally driven (Floquet) dissipative quasicrystal. We implement our ideas via photonic quantum walks in coupled optical fibre loops11. Our study highlights the intertwinement of topology, symmetry breaking and mobility phase transitions in non-Hermitian quasicrystalline synthetic matter. Our results may be applied in phase-change devices, in which the bulk and edge transport and the energy or particle exchange with the environment can be predicted and controlled.
Style APA, Harvard, Vancouver, ISO itp.
10

Ling, Yi. "Holographic lattices and metal–insulator transition". International Journal of Modern Physics A 30, nr 28n29 (20.10.2015): 1545013. http://dx.doi.org/10.1142/s0217751x1545013x.

Pełny tekst źródła
Streszczenie:
This paper is an extension of the talk given at the conference on Gravitation and Cosmology/The Fourth Galileo-Xu Guangqi Meeting. We intend to present a short review on recent progress on the construction of holographic lattices and its application to metal–insulator transition (MIT), which is a fundamentally important phenomenon in condensed matter physics. We will firstly implement the Peierls phase transition by constructing holographic charge density waves which are induced by the spontaneous breaking of translational symmetry. Then we turn to the holographic realization of metal–insulator transition as a quantum critical phenomenon with many strongly correlated electrons involved. The holographic entanglement entropy as a diagnostic for such quantum phase transitions will be briefly mentioned.
Style APA, Harvard, Vancouver, ISO itp.
11

de Oliveira, N. A., Marcus V. Tovar Costa, A. Troper, Gloria M. Japiassú i M. A. Continentino. "Magnetic-field-driven metal-insulator transition in Kondo insulators". Physical Review B 60, nr 3 (15.07.1999): 1444–47. http://dx.doi.org/10.1103/physrevb.60.1444.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Continentino, Mucio A. "Metal-insulator transition in semi-metals and Kondo insulators". Physics Letters A 197, nr 5-6 (luty 1995): 417–22. http://dx.doi.org/10.1016/0375-9601(94)00977-w.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Gilman, John J. "Insulator-metal transitions at microindentations". Journal of Materials Research 7, nr 3 (marzec 1992): 535–38. http://dx.doi.org/10.1557/jmr.1992.0535.

Pełny tekst źródła
Streszczenie:
For all tetrahedrally bonded semiconductors (five group IV plus nine III-V compounds and nine II-VI compounds), it is shown that the critical pressure needed to transform the semiconductor into the metallic state correlates with the microindentation hardness number. The same is done for five alkaline earth oxides. The critical transition pressures have been estimated from Herzfeld's theory—that is, from the compression at which the dielectric constant diverges to infinity. Experimental transition pressures also correlate with hardness numbers, and they correlate with the activation energies for dislocation motion. Since these transitions are electronic they can be influenced by photons, doping (donors enhance while acceptors inhibit them), currents, surface states, etc. Microindentation also provides a simple experimental tool for observing pressure and/or shear induced transformations.
Style APA, Harvard, Vancouver, ISO itp.
14

Moon, Byoung Hee. "Metal-insulator transition in two-dimensional transition metal dichalcogenides". Emergent Materials 4, nr 4 (22.03.2021): 989–98. http://dx.doi.org/10.1007/s42247-021-00202-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Schweitzer, J. W., L. S. Martinson, N. C. Baenziger, D. C. Swenson, Victor G. Young i Ilia Guzei. "Insulator-metal transition inBaCo0.9Ni0.1S2−ySey". Physical Review B 62, nr 19 (15.11.2000): 12792–99. http://dx.doi.org/10.1103/physrevb.62.12792.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Conwell, E. M., H. A. Mizes i S. Jeyadev. "Metal-insulator transition intrans-polyacetylene". Physical Review B 40, nr 3 (15.07.1989): 1630–41. http://dx.doi.org/10.1103/physrevb.40.1630.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Iwasa, Y., H. Shimoda, T. T. M. Palstra, Y. Maniwa, O. Zhou i T. Mitani. "Metal-insulator transition in ammoniatedK3C60". Physical Review B 53, nr 14 (1.04.1996): R8836—R8839. http://dx.doi.org/10.1103/physrevb.53.r8836.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Foury-Leylekian, P., S. Fagot, S. Ravy, J. P. Pouget, G. Popov, M. V. Lobanov i M. Greenblatt. "Metal–insulator transition in BaVS3". Physica B: Condensed Matter 359-361 (kwiecień 2005): 1225–27. http://dx.doi.org/10.1016/j.physb.2005.01.365.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Khazeni, K., Vincent H. Crespi, J. Hone, A. Zettl i Marvin L. Cohen. "Metal-insulator transition inAC60:RbC60andKC60". Physical Review B 56, nr 11 (15.09.1997): 6627–30. http://dx.doi.org/10.1103/physrevb.56.6627.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Conwell, E. M., i S. Jeyadev. "Insulator-Metal Transition intrans-Polyacetylene". Physical Review Letters 61, nr 3 (18.07.1988): 361–64. http://dx.doi.org/10.1103/physrevlett.61.361.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Kato, M., Y. Tani, T. Imamura, K. Hirota i K. Yoshimura. "Metal–insulator transition in compounds". Physica B: Condensed Matter 403, nr 5-9 (kwiecień 2008): 1315–17. http://dx.doi.org/10.1016/j.physb.2007.10.135.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Montorsi, A., i M. Rasetti. "Mott-hubbard metal-insulator transition". Il Nuovo Cimento D 16, nr 10-11 (październik 1994): 1649–57. http://dx.doi.org/10.1007/bf02462155.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Fukushima, Noburu, Shigenori Tanaka, Hiromi Niu i Ken Ando. "Metal-insulator transition in Sr3V2O7". Physica C: Superconductivity 185-189 (grudzień 1991): 715–16. http://dx.doi.org/10.1016/0921-4534(91)92160-d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Finlayson, D. M. "Metal-insulator transition in InP". Philosophical Magazine Letters 61, nr 5 (maj 1990): 293–96. http://dx.doi.org/10.1080/09500839008206369.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Kirkpatrick, T. R., i D. Belitz. "Approaching the metal-insulator transition". Physical Review B 41, nr 16 (1.06.1990): 11082–100. http://dx.doi.org/10.1103/physrevb.41.11082.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Pergament, A. L. "Metal-Insulator Transition Temperatures and Excitonic Phases in Vanadium Oxides". ISRN Condensed Matter Physics 2011 (17.11.2011): 1–5. http://dx.doi.org/10.5402/2011/605913.

Pełny tekst źródła
Streszczenie:
The possibility of applying the excitonic insulator model to the description of metal-insulator transitions in vanadium oxide Magneli phases is investigated. Based on the Animalu transition metal model potential, the equation for the constant of Coulomb interaction in the theory of excitonic insulator is modified. It is shown that this theory allows the transition temperatures of all the oxides to be calculated. The conformity of the theory with the experimental data concerning the effective mass values for electrons in vanadium oxides is discussed.
Style APA, Harvard, Vancouver, ISO itp.
27

Liao, Zhaoliang, i Jiandi Zhang. "Metal-to-Insulator Transition in Ultrathin Manganite Heterostructures". Applied Sciences 9, nr 1 (3.01.2019): 144. http://dx.doi.org/10.3390/app9010144.

Pełny tekst źródła
Streszczenie:
Thickness-driven phase transitions have been widely observed in many correlated transition metal oxides materials. One of the important topics is the thickness-driven metal to insulator transition in half-metal La2/3Sr1/3MnO3 (LSMO) thin films, which has attracted great attention in the past few decades. In this article, we review research on the nature of the metal-to-insulator (MIT) transition in LSMO ultrathin films. We discuss in detail the proposed mechanisms, the progress made up to date, and the key issues existing in understanding the related MIT. We also discuss MIT in other correlated oxide materials as a comparison that also has some implications for understanding the origin of MIT.
Style APA, Harvard, Vancouver, ISO itp.
28

Farkašovský, Pavol. "The Behavior of the Spin-One-Half Falicov–Kimball Model Close to the Metal–Insulator Transition". International Journal of Modern Physics B 12, nr 26 (20.10.1998): 2709–16. http://dx.doi.org/10.1142/s0217979298001551.

Pełny tekst źródła
Streszczenie:
The spin-one-half Falicov–Kimball model for electronically driven valence and metal–insulator transitions is studied in one and two dimensions using small-cluster exact-diagonalization calculations. Performing an exhaustive study of the model close to the metal–insulator transition we have found that the spin-one-half Falicov–Kimball model can describe much of experimental data of transition-metal and rare-earth compounds. Particularly, except the discontinuous transitions it can provide the qualitative explanation for all typical behaviors of the electrical conductivity observed experimentally in these materials.
Style APA, Harvard, Vancouver, ISO itp.
29

Könenkamp, R. "Electrically driven metal-insulator transition in layered transition-metal dichalcogenides". Physical Review B 38, nr 5 (15.08.1988): 3056–59. http://dx.doi.org/10.1103/physrevb.38.3056.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Pergament, A. L., G. B. Stefanovich, N. A. Kuldin i A. A. Velichko. "On the Problem of Metal-Insulator Transitions in Vanadium Oxides". ISRN Condensed Matter Physics 2013 (29.07.2013): 1–6. http://dx.doi.org/10.1155/2013/960627.

Pełny tekst źródła
Streszczenie:
The problem of metal-insulator transition is considered. It is shown that the Mott criterion aB(nc)1/3≈0.25 is applicable not only to heavily doped semiconductors but also to many other materials, including some transition-metal compounds, such as vanadium oxides (particularly, VO2 and V2O3). The low-temperature transition (“paramagnetic metal—antiferromagnetic insulator”) in vanadium sesquioxide is described on the basis of this concept in terms of an intervening phase, between metal and insulator states, with divergent dielectric constant and effective charge carrier mass. Recent communications concerning a possible “metal-insulator transition” in vanadium pentoxide are also discussed.
Style APA, Harvard, Vancouver, ISO itp.
31

Han, Tianxue. "The Research on the Complexity of 1T-TaS2 at Ultra-low Temperatures". Journal of Physics: Conference Series 2152, nr 1 (1.01.2022): 012002. http://dx.doi.org/10.1088/1742-6596/2152/1/012002.

Pełny tekst źródła
Streszczenie:
Abstract Graphene, as a successfully industrialized two-dimensional material, has greatly promoted the development of other two-dimensional materials, such as transition metal dichalcogenide (TMDs). 1T-TaS2 is a classical TMDs material, which presents metallicity at high temperature. It undergoes a variety of charge density wave (CDW) phase transitions during the temperature declining process, and presents insulating properties at low temperature. During the temperature rise period, 1T-TaS2 goes through a phase transition, from an energy band insulator to Mott insulator, followed by an insulation-metal phase transition. The complexity of 1T-TaS2 phase diagram encourages researchers to conduct extensive research on it. This paper, via means of resistance, magnetic susceptibility and other technical methods, finds out that the ultra-low temperature of 1T-TaS2 suggests additional complexity. In addition, with the angle resolved photoemission spectroscopy (ARPES) technique of in-situ alkali metal evaporation, this paper proposes that the 1T-TaS2 ultra-low temperature ground state may exist a combination of state and surface state. Our findings provide more experimental evidence for the physical mechanism of this system.
Style APA, Harvard, Vancouver, ISO itp.
32

de Oliveira, N. A. "Impurity effect on the metal-insulator transition in Kondo insulators". Physical Review B 61, nr 23 (15.06.2000): 15726–30. http://dx.doi.org/10.1103/physrevb.61.15726.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Tovar Costa, M. V., A. Troper, N. A. de Oliveira, Gloria M. Japiassú i M. A. Continentino. "Metal-insulator transition in Kondo insulators: A functional-integral approach". Physical Review B 57, nr 12 (15.03.1998): 6943–48. http://dx.doi.org/10.1103/physrevb.57.6943.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Li, Guang-Bin, Guang-Ming Zhang i Lu Yu. "Insulator-to-metal phase transition in Yb-based Kondo insulators". EPL (Europhysics Letters) 91, nr 5 (1.09.2010): 57002. http://dx.doi.org/10.1209/0295-5075/91/57002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Shimazu, Y., K. Arai i T. Iwabuchi. "Metal–insulator transition in a transition metal dichalcogenide: Dependence on metal contacts". Journal of Physics: Conference Series 969 (marzec 2018): 012105. http://dx.doi.org/10.1088/1742-6596/969/1/012105.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Yamada, Atsushi. "A study of the magnetic properties in the Hubbard model on the honeycomb lattice by variational cluster approximation". International Journal of Modern Physics B 30, nr 23 (15.09.2016): 1650158. http://dx.doi.org/10.1142/s0217979216501587.

Pełny tekst źródła
Streszczenie:
Magnetic properties of the half-filled Hubbard model on the honeycomb lattice, which is a simple model of graphene, are studied using the variational cluster approximation (VCA). We found that the critical interaction strength of a magnetic transition is slightly lower than that of the nonmagnetic metal-to-insulator transition and the magnetic order parameter is already nonnegligible at the latter transition point. Thus, a semi-metallic state becomes a magnetic insulator as the interaction strength increases, and a spin liquid state characterized by a Mott insulator without spontaneously broken spatial or spin symmetry, or a state very close to that is not realized in this system. Both the magnetic and nonmagnetic metal-to-insulator transitions are of the second-order. Our results agree with recent large scale quantum Monte Carlo (QMC) simulations.
Style APA, Harvard, Vancouver, ISO itp.
37

Liang, Yongcheng, Ping Qin, Zhiyong Liang, Lizhen Zhang, Xun Yuan i Yubo Zhang. "Identification of a monoclinic metallic state in VO2 from a modified first-principles approach". Modern Physics Letters B 33, nr 12 (30.04.2019): 1950148. http://dx.doi.org/10.1142/s0217984919501483.

Pełny tekst źródła
Streszczenie:
Metal-insulator transition (MIT) underlies many remarkable and technologically important phenomena in VO2. Even though its monoclinic structure had before been the reserve of the insulating state, recent experiments have observed an unexpected monoclinic metallic state. Here, we use a modified approach combining first-principles calculations with orbital-biased potentials to reproduce the correct stability ordering and electronic structures of different phases of VO2. We identify a ferromagnetic monoclinic metal that is likely to be the experimentally observed mysterious metastable state. Furthermore, the calculations show that an isostructural insulator-metal electronic transition is followed by the lattice distortion from the monoclinic structure to the rutile one. These results not only explain the experimental observations of the monoclinic metallic state and the decoupled structural and electronic transitions of VO2, but also provide a useful understanding for the metal-insulator transition in other strongly correlated d electron systems.
Style APA, Harvard, Vancouver, ISO itp.
38

YANG YONG-HONG, XING DING-YU i GONG CHANG-DE. "METAL-INSULATOR TRANSITION IN YBa2Cu3O7-x". Acta Physica Sinica 41, nr 1 (1992): 136. http://dx.doi.org/10.7498/aps.41.136.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Satoh, C., H. Kawanaka, H. Bando, H. Irino i Y. Nishihara. "Metal-Insulator Transition in SrRu1-xMnxO3". Journal of the Magnetics Society of Japan 29, nr 3 (2005): 252–55. http://dx.doi.org/10.3379/jmsjmag.29.252.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Silvera, I. "The insulator-metal transition in hydrogen". Proceedings of the National Academy of Sciences 107, nr 29 (19.07.2010): 12743–44. http://dx.doi.org/10.1073/pnas.1007947107.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Wegner, Franz. "Metal–Insulator Transition in Disordered Solids". Interdisciplinary Science Reviews 11, nr 2 (1.06.1986): 164–67. http://dx.doi.org/10.1179/030801886789799719.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Escote, M. T., V. B. Barbeta, R. F. Jardim i J. Campo. "Metal–insulator transition in Nd1−xEuxNiO3compounds". Journal of Physics: Condensed Matter 18, nr 26 (19.06.2006): 6117–32. http://dx.doi.org/10.1088/0953-8984/18/26/030.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Tachiki, Masashi, i Hideki Matsumoto. "Metal-Insulator Transition in Oxide Superconductors". Progress of Theoretical Physics Supplement 101 (1990): 353–69. http://dx.doi.org/10.1143/ptps.101.353.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Escote, M. T., i R. F. Jardim. "Metal-insulator transition in Nd1-xLnxNiO3compounds". Radiation Effects and Defects in Solids 147, nr 1-2 (październik 1998): 101–8. http://dx.doi.org/10.1080/10420159808226393.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Wojtowicz, T., T. Dietl, M. Sawicki, W. Plesiewicz i J. Jaroszyński. "Metal-Insulator Transition in Semimagnetic Semiconductors". Physical Review Letters 56, nr 22 (2.06.1986): 2419–22. http://dx.doi.org/10.1103/physrevlett.56.2419.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Tiwari, Ashutosh, i K. P. Rajeev. "Metal-insulator transition in La0.7Sr0.3Mn1−xFexO3". Journal of Applied Physics 86, nr 9 (listopad 1999): 5175–78. http://dx.doi.org/10.1063/1.371496.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Wilson, R. Mark. "Metal–insulator transition in vanadium dioxide". Physics Today 62, nr 8 (sierpień 2009): 17. http://dx.doi.org/10.1063/1.4797176.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

He, Xu, Kui-juan Jin, Chen Ge, Zhong-shui Ma i Guo-zhen Yang. "Ferroelectric control of metal–insulator transition". Solid State Communications 229 (marzec 2016): 32–36. http://dx.doi.org/10.1016/j.ssc.2015.12.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Iwasa, Y., T. Takenobu, H. Kitano i A. Maeda. "Metal–insulator transition in C60 fullerides". Physica C: Superconductivity 388-389 (maj 2003): 615–16. http://dx.doi.org/10.1016/s0921-4534(02)02767-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Lin, C. R., S. L. Chou i S. T. Lin. "The metal - insulator transition in quasicrystals". Journal of Physics: Condensed Matter 8, nr 49 (2.12.1996): L725—L730. http://dx.doi.org/10.1088/0953-8984/8/49/002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii