Artykuły w czasopismach na temat „Metal-graphene Junction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Metal-graphene Junction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Konig, Matthias, Gunther Ruhl, Amit Gahoi, Sebastian Wittmann, Tobias Preis, Joerg-Martin Batke, Ioan Costina i Max C. Lemme. "Accurate Graphene-Metal Junction Characterization". IEEE Journal of the Electron Devices Society 7 (2019): 219–26. http://dx.doi.org/10.1109/jeds.2019.2891516.
Pełny tekst źródłaShao, Rui Qiang. "Graphene-Silicon Schottky Junction Fabricating by Laser Reduced Graphene Oxides". Advanced Materials Research 709 (czerwiec 2013): 139–42. http://dx.doi.org/10.4028/www.scientific.net/amr.709.139.
Pełny tekst źródłaIndykiewicz, K., C. Bray, C. Consejo, F. Teppe, S. Danilov, S. D. Ganichev i A. Yurgens. "Current-induced enhancement of photo-response in graphene THz radiation detectors". AIP Advances 12, nr 11 (1.11.2022): 115009. http://dx.doi.org/10.1063/5.0117818.
Pełny tekst źródłaHong, Seokmin, Youngki Yoon i Jing Guo. "Metal-semiconductor junction of graphene nanoribbons". Applied Physics Letters 92, nr 8 (25.02.2008): 083107. http://dx.doi.org/10.1063/1.2885095.
Pełny tekst źródłaHuang, Ko-Fan, Önder Gül, Takashi Taniguchi, Kenji Watanabe i Philip Kim. "Andreev reflection between aluminum and graphene across van der Waals barriers". Low Temperature Physics 49, nr 6 (1.06.2023): 662–69. http://dx.doi.org/10.1063/10.0019423.
Pełny tekst źródłaHe, Chunhui, Qian Zhang, Shuhui Tao, Cezhou Zhao, Chun Zhao, Weitao Su, Yannick J. Dappe, Richard J. Nichols i Li Yang. "Carbon-contacted single molecule electrical junctions". Physical Chemistry Chemical Physics 20, nr 38 (2018): 24553–60. http://dx.doi.org/10.1039/c8cp02877j.
Pełny tekst źródłaShen, Caihua, Juan Liu, N. Jiao, C. X. Zhang, Huaping Xiao, R. Z. Wang i L. Z. Sun. "Transport properties of graphene/metal planar junction". Physics Letters A 378, nr 18-19 (marzec 2014): 1321–25. http://dx.doi.org/10.1016/j.physleta.2014.03.008.
Pełny tekst źródłaKumar, Ravinder, i Derick Engles. "Modeling the Charge Transport in Graphene Nano Ribbon Interfaces for Nano Scale Electronic Devices". Journal of Multiscale Modelling 06, nr 01 (marzec 2015): 1450003. http://dx.doi.org/10.1142/s1756973714500036.
Pełny tekst źródłaJung, Jaedong, Honghwi Park, Heungsup Won, Muhan Choi, Chang-Ju Lee i Hongsik Park. "Effect of Graphene Doping Level near the Metal Contact Region on Electrical and Photoresponse Characteristics of Graphene Photodetector". Sensors 20, nr 17 (19.08.2020): 4661. http://dx.doi.org/10.3390/s20174661.
Pełny tekst źródłaTsai, Yu-Yang, Chun-Yu Kuo, Bo-Chang Li, Po-Wen Chiu i Klaus Y. J. Hsu. "A Graphene/Polycrystalline Silicon Photodiode and Its Integration in a Photodiode–Oxide–Semiconductor Field Effect Transistor". Micromachines 11, nr 6 (17.06.2020): 596. http://dx.doi.org/10.3390/mi11060596.
Pełny tekst źródłaKou, Rong, Yuyan Shao, Donghai Mei, Zimin Nie, Donghai Wang, Chongmin Wang, Vilayanur V. Viswanathan i in. "Stabilization of Electrocatalytic Metal Nanoparticles at Metal−Metal Oxide−Graphene Triple Junction Points". Journal of the American Chemical Society 133, nr 8 (2.03.2011): 2541–47. http://dx.doi.org/10.1021/ja107719u.
Pełny tekst źródłaXia, Fengnian, Vasili Perebeinos, Yu-ming Lin, Yanqing Wu i Phaedon Avouris. "The origins and limits of metal–graphene junction resistance". Nature Nanotechnology 6, nr 3 (6.02.2011): 179–84. http://dx.doi.org/10.1038/nnano.2011.6.
Pełny tekst źródłaZhao, Xiuming, i Maodu Chen. "Charge transfer mechanism of SERS for metal–molecule–metal junction supported by graphene and boron-doped graphene". RSC Adv. 4, nr 108 (18.11.2014): 63596–602. http://dx.doi.org/10.1039/c4ra10141c.
Pełny tekst źródłaAhmadi, Ramin, i Mohammad Taghi Ahmadi. "Contact Effect On Twisted Graphene Based Schottky Transistor". ECS Journal of Solid State Science and Technology 11, nr 3 (1.03.2022): 031005. http://dx.doi.org/10.1149/2162-8777/ac5eb3.
Pełny tekst źródłaAhmadi, Ramin, Mohammad Taghi Ahmadi, Seyed Saeid Rahimian Koloor i Michal Petrů. "Monolayer Twisted Graphene-Based Schottky Transistor". Materials 14, nr 15 (23.07.2021): 4109. http://dx.doi.org/10.3390/ma14154109.
Pełny tekst źródłaCUI, LILING, BINGCHU YANG, XINMEI LI, JUN HE i MENGQIU LONG. "ELECTRONIC TRANSPORT PROPERTIES OF TRANSITION METAL (Cu, Fe) PHTHALOCYANINES CONNECTING TO V-SHAPED ZIGZAG GRAPHENE NANORIBBONS". International Journal of Modern Physics B 28, nr 08 (24.02.2014): 1450019. http://dx.doi.org/10.1142/s0217979214500192.
Pełny tekst źródłaMendoza, Cesar D., i F. L. Freire. "Single-Layer Graphene/Germanium Interface Representing a Schottky Junction Studied by Photoelectron Spectroscopy". Nanomaterials 13, nr 15 (26.07.2023): 2166. http://dx.doi.org/10.3390/nano13152166.
Pełny tekst źródłaLee, Jun-Ho, Inchul Choi, Nae Bong Jeong, Minjeong Kim, Jaeho Yu, Sung Ho Jhang i Hyun-Jong Chung. "Simulation of Figures of Merit for Barristor Based on Graphene/Insulator Junction". Nanomaterials 12, nr 17 (31.08.2022): 3029. http://dx.doi.org/10.3390/nano12173029.
Pełny tekst źródłaKai, Shuangshuang, Baojuan Xi, Xiaolei Liu, Lin Ju, Peng Wang, Zhenyu Feng, Xiaojian Ma i Shenglin Xiong. "An innovative Au-CdS/ZnS-RGO architecture for efficient photocatalytic hydrogen evolution". Journal of Materials Chemistry A 6, nr 7 (2018): 2895–99. http://dx.doi.org/10.1039/c7ta10958j.
Pełny tekst źródłaGutiérrez, Diego, Jesús Alejandro de Sousa, Marta Mas-Torrent i Núria Crivillers. "Resistive Switching Observation in a Gallium-Based Liquid Metal/Graphene Junction". ACS Applied Electronic Materials 2, nr 10 (14.09.2020): 3093–99. http://dx.doi.org/10.1021/acsaelm.0c00296.
Pełny tekst źródłaRocha Robledo, Ana K., Mario Flores Salazar, Bárbara A. Muñiz Martínez, Ángel A. Torres-Rosales, Héctor F. Lara-Alfaro, Osvaldo Del Pozo-Zamudio, Edgar A. Cerda-Méndez, Sergio Jiménez-Sandoval i Andres De Luna Bugallo. "Interlayer charge transfer in supported and suspended MoS2/Graphene/MoS2 vertical heterostructures". PLOS ONE 18, nr 7 (25.07.2023): e0283834. http://dx.doi.org/10.1371/journal.pone.0283834.
Pełny tekst źródłaZhao, Yi, Deyin Zhao, Zhenzhen Ma, Gong Li, Dan Zhao i Xin Li. "Ion Sensitive GO-Si Based Metal-Semiconductor Junction Resistor Gas Sensor". Coatings 11, nr 11 (28.10.2021): 1310. http://dx.doi.org/10.3390/coatings11111310.
Pełny tekst źródłaLi, Changli, Yequan Xiao, Li Zhang, Yanbo Li, Jean-Jacques Delaunay i Hongwei Zhu. "Efficient photoelectrochemical water oxidation enabled by an amorphous metal oxide-catalyzed graphene/silicon heterojunction photoanode". Sustainable Energy & Fuels 2, nr 3 (2018): 663–72. http://dx.doi.org/10.1039/c7se00504k.
Pełny tekst źródłaTeraoka, Masahiro, Yuzuki Ono i Hojun Im. "Capacitance characterization of graphene/n-Si Schottky junction solar cell with MOS capacitor". Materials Research Express 10, nr 8 (1.08.2023): 085602. http://dx.doi.org/10.1088/2053-1591/acf09c.
Pełny tekst źródłaRahmani, Meisam, Razali Ismail, Mohammad Taghi Ahmadi, Mohammad Javad Kiani, Mehdi Saeidmanesh, F. A. Hediyeh Karimi, Elnaz Akbari i Komeil Rahmani. "The Effect of Bilayer Graphene Nanoribbon Geometry on Schottky-Barrier Diode Performance". Journal of Nanomaterials 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/636239.
Pełny tekst źródłaXu, Dikai, Xuegong Yu, Dace Gao, Cheng Li, Mengyao Zhong, Haiyan Zhu, Shuai Yuan, Zhan Lin i Deren Yang. "Self-generation of a quasi p–n junction for high efficiency chemical-doping-free graphene/silicon solar cells using a transition metal oxide interlayer". Journal of Materials Chemistry A 4, nr 27 (2016): 10558–65. http://dx.doi.org/10.1039/c6ta02868c.
Pełny tekst źródłaAhmad, H., i T. M. K. Thandavan. "High photoresponsivity and external quantum efficiency of ultraviolet photodetection by mechanically exfoliated planar multi-layered graphene oxide sheet prepared using modified Hummer's method and spin coating technique". Materials Express 10, nr 7 (1.07.2020): 998–1009. http://dx.doi.org/10.1166/mex.2020.1717.
Pełny tekst źródłaLai, Qingxue, Qingwen Gao, Qi Su, Yanyu Liang, Yuxi Wang i Zhi Yang. "Bottom-up synthesis of high-performance nitrogen-enriched transition metal/graphene oxygen reduction electrocatalysts both in alkaline and acidic solution". Nanoscale 7, nr 35 (2015): 14707–14. http://dx.doi.org/10.1039/c5nr02984h.
Pełny tekst źródłaZhou, Huawei, Junxue Guo, Can Wang, Xuejing Liu, Shaozhen Shi, Jiazhen Wei, Xipeng Pu i in. "2D Schottky Junction between Graphene Oxide and Transition‐Metal Dichalcogenides: Photoresponsive Properties and Electrocatalytic Performance". Advanced Materials Interfaces 6, nr 6 (13.01.2019): 1801657. http://dx.doi.org/10.1002/admi.201801657.
Pełny tekst źródłaDavydov, S. Yu, i O. V. Posrednik. "Model of a “Two-Dimensional Metal–Graphene-Like Compound” Junction: Consideration for Interaction between the Components". Semiconductors 55, nr 7 (lipiec 2021): 595–600. http://dx.doi.org/10.1134/s1063782621070071.
Pełny tekst źródłaYoon, Hoon Hahn, Wonho Song, Sungchul Jung, Junhyung Kim, Kyuhyung Mo, Gahyun Choi, Hu Young Jeong, Jong Hoon Lee i Kibog Park. "Negative Fermi-Level Pinning Effect of Metal/n-GaAs(001) Junction Induced by a Graphene Interlayer". ACS Applied Materials & Interfaces 11, nr 50 (22.11.2019): 47182–89. http://dx.doi.org/10.1021/acsami.9b12074.
Pełny tekst źródłaZhang, Zengxing, Yunxian Guo, Xiaojuan Wang, Dong Li, Fengli Wang i Sishen Xie. "Direct Growth of Nanocrystalline Graphene/Graphite Transparent Electrodes on Si/SiO2for Metal-Free Schottky Junction Photodetectors". Advanced Functional Materials 24, nr 6 (1.09.2013): 835–40. http://dx.doi.org/10.1002/adfm.201301924.
Pełny tekst źródłaWang, Haotian. "Transition-Metal Single Atom Catalysts for Highly Efficient Artificial Photosynthesis". ECS Meeting Abstracts MA2018-01, nr 31 (13.04.2018): 1919. http://dx.doi.org/10.1149/ma2018-01/31/1919.
Pełny tekst źródłaXiang, Yiqiu, Ling Xin, Jiwei Hu, Caifang Li, Jimei Qi, Yu Hou i Xionghui Wei. "Advances in the Applications of Graphene-Based Nanocomposites in Clean Energy Materials". Crystals 11, nr 1 (7.01.2021): 47. http://dx.doi.org/10.3390/cryst11010047.
Pełny tekst źródłaXiang, Yiqiu, Ling Xin, Jiwei Hu, Caifang Li, Jimei Qi, Yu Hou i Xionghui Wei. "Advances in the Applications of Graphene-Based Nanocomposites in Clean Energy Materials". Crystals 11, nr 1 (7.01.2021): 47. http://dx.doi.org/10.3390/cryst11010047.
Pełny tekst źródłaPifferi, Valentina, Anna Testolin, Chiara Ingrosso, Maria Lucia Curri, Ilaria Palchetti i Luigi Falciola. "Au Nanoparticles Decorated Graphene-Based Hybrid Nanocomposite for As(III) Electroanalytical Detection". Chemosensors 10, nr 2 (8.02.2022): 67. http://dx.doi.org/10.3390/chemosensors10020067.
Pełny tekst źródłaGoudarzi, H., i M. Khezerlou. "Tunneling conductance in a gapped graphene-based normal metal–insulator–d-wave superconductor junction: Case of massive Dirac electrons". Physica E: Low-dimensional Systems and Nanostructures 43, nr 2 (grudzień 2010): 604–9. http://dx.doi.org/10.1016/j.physe.2010.10.002.
Pełny tekst źródłaHajati, Y., A. Heidari, M. Z. Shoushtari i G. Rashedi. "Spin-dependent barrier effects on the transport properties of graphene-based normal metal/ferromagnetic barrier/d-wave superconductor junction". Journal of Magnetism and Magnetic Materials 362 (sierpień 2014): 36–41. http://dx.doi.org/10.1016/j.jmmm.2014.03.018.
Pełny tekst źródłaKitaura, Ryo. "(Invited, Digital Presentation) Ultrathin Lateral Heterostructures Based on Two-Dimensional Semiconductors". ECS Meeting Abstracts MA2022-01, nr 10 (7.07.2022): 784. http://dx.doi.org/10.1149/ma2022-0110784mtgabs.
Pełny tekst źródłaYamamura, A., S. Honda, J. Inoue i H. Itoh. "Magnetoresistance in Metal/graphene/metal Junctions". Journal of the Magnetics Society of Japan 34, nr 1 (2010): 34–38. http://dx.doi.org/10.3379/msjmag.0912re0013.
Pełny tekst źródłaHuang, Ke, Junfeng Lu, Donglin Li, Xianjia Chen, Dingfeng Jin i Hongxiao Jin. "Au- or Ag-Decorated ZnO-Rod/rGO Nanocomposite with Enhanced Room-Temperature NO2-Sensing Performance". Nanomaterials 13, nr 16 (18.08.2023): 2370. http://dx.doi.org/10.3390/nano13162370.
Pełny tekst źródłaGhosal, Sanghamitra, i Partha Bhattacharyya. "ZnO/RGO Heterojunction Based near Room Temperature Alcohol SENSOR with Improved Efficiency". Engineering Proceedings 6, nr 1 (17.05.2021): 25. http://dx.doi.org/10.3390/i3s2021dresden-10073.
Pełny tekst źródłaChaves, Ferney A., David Jiménez, Jaime E. Santos, Peter Bøggild i José M. Caridad. "Electrostatics of metal–graphene interfaces: sharp p–n junctions for electron-optical applications". Nanoscale 11, nr 21 (2019): 10273–81. http://dx.doi.org/10.1039/c9nr02029b.
Pełny tekst źródłaJin, Xin, Yu-Yang Zhang, Sokrates T. Pantelides i Shixuan Du. "Integration of graphene and two-dimensional ferroelectrics: properties and related functional devices". Nanoscale Horizons 5, nr 9 (2020): 1303–8. http://dx.doi.org/10.1039/d0nh00255k.
Pełny tekst źródłaCasalino, Maurizio. "Silicon Meets Graphene for a New Family of Near-Infrared Schottky Photodetectors". Applied Sciences 9, nr 18 (5.09.2019): 3677. http://dx.doi.org/10.3390/app9183677.
Pełny tekst źródłaYan, Weixian, i Min Guo. "Electron transmission across normal metal-strained graphene–normal metal junctions". Physica B: Condensed Matter 599 (grudzień 2020): 412484. http://dx.doi.org/10.1016/j.physb.2020.412484.
Pełny tekst źródłaMochizuki, Yoneko, i Hideo Yoshioka. "Transport properties of normal metal–graphene nanoribbon–normal metal junctions". Physica E: Low-dimensional Systems and Nanostructures 42, nr 4 (luty 2010): 722–25. http://dx.doi.org/10.1016/j.physe.2009.10.035.
Pełny tekst źródłaArachchige, Hashitha M. M. Munasinghe, Nanda Gunawardhana, Dario Zappa i Elisabetta Comini. "UV Light Assisted NO2Sensing by SnO2/Graphene Oxide Composite". Proceedings 2, nr 13 (23.11.2018): 787. http://dx.doi.org/10.3390/proceedings2130787.
Pełny tekst źródłaSemkin, Valentin, Dmitry Mylnikov, Elena Titova, Sergey Zhukov i Dmitry Svintsov. "Gate-controlled polarization-resolving mid-infrared detection at metal–graphene junctions". Applied Physics Letters 120, nr 19 (9.05.2022): 191107. http://dx.doi.org/10.1063/5.0088724.
Pełny tekst źródłaDe Sanctis, Adolfo, Jake Mehew, Monica Craciun i Saverio Russo. "Graphene-Based Light Sensing: Fabrication, Characterisation, Physical Properties and Performance". Materials 11, nr 9 (18.09.2018): 1762. http://dx.doi.org/10.3390/ma11091762.
Pełny tekst źródła