Gotowa bibliografia na temat „Metal complexes and nanoparticles”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Metal complexes and nanoparticles”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Metal complexes and nanoparticles"
Bharadwaj, Namita, i Jaishri Kaushik. "Nano Synthesis and Characterization of Complex Derived from Silver Metal Conjugated with Midodrine Hydrochloride". Oriental Journal Of Chemistry 37, nr 1 (28.02.2021): 157–61. http://dx.doi.org/10.13005/ojc/370121.
Pełny tekst źródłaMasilela, Nkosiphile, Edith Antunes i Tebello Nyokong. "Axial coordination of zinc and silicon phthalocyanines to silver and gold nanoparticles: an investigation of their photophysicochemical and antimicrobial behavior". Journal of Porphyrins and Phthalocyanines 17, nr 06n07 (czerwiec 2013): 417–30. http://dx.doi.org/10.1142/s1088424613500016.
Pełny tekst źródłaBergamini, Giacomo, i Paola Ceroni. "Metal complexes and nanoparticles for energy upconversion". Dalton Transactions 47, nr 26 (2018): 8507–8. http://dx.doi.org/10.1039/c8dt90101e.
Pełny tekst źródłaRevaprasadu, N., i S. N. Mlondo. "Use of metal complexes to synthesize semiconductor nanoparticles". Pure and Applied Chemistry 78, nr 9 (1.01.2006): 1691–702. http://dx.doi.org/10.1351/pac200678091691.
Pełny tekst źródłaSavita Belwal, Sujana Kariveda, Saritha Ramagiri, Swathi A, Shubham Kute i Suryam Goud. "The anti-malignant activity of Macrotyloma uniflorum mediated green synthesized Cu and Zn metal-ligand nano complexes". International Journal of Research in Pharmaceutical Sciences 11, SPL4 (21.12.2020): 1573–80. http://dx.doi.org/10.26452/ijrps.v11ispl4.4340.
Pełny tekst źródłaZhou, Meng, Chenjie Zeng, Qi Li, Tatsuya Higaki i Rongchao Jin. "Gold Nanoclusters: Bridging Gold Complexes and Plasmonic Nanoparticles in Photophysical Properties". Nanomaterials 9, nr 7 (28.06.2019): 933. http://dx.doi.org/10.3390/nano9070933.
Pełny tekst źródłaGhavam, Mansureh, Dara Dastan, Elaheh Fadaei i Gholamabbas Chehardoli. "Synthesis of Gadolinium Complexes Using Medicinal Plant Extracts". Avicenna Journal of Pharmaceutical Research 2, nr 2 (30.12.2021): 44–48. http://dx.doi.org/10.34172/ajpr.2021.09.
Pełny tekst źródłaLastra, Ruben O., Tatjana Paunesku, Barite Gutama, Filiberto Reyes, Josie François, Shelby Martinez, Lun Xin i in. "Protein Binding Effects of Dopamine Coated Titanium Dioxide Shell Nanoparticles". Precision Nanomedicine 2, nr 4 (2.10.2019): 393–438. http://dx.doi.org/10.33218/prnano2(4).190802.1.
Pełny tekst źródłaAlarcón-Correa, Mariana, Tung-Chun Lee i Peer Fischer. "Dynamic Inclusion Complexes of Metal Nanoparticles Inside Nanocups". Angewandte Chemie International Edition 54, nr 23 (8.05.2015): 6730–34. http://dx.doi.org/10.1002/anie.201500635.
Pełny tekst źródłaAlarcón-Correa, Mariana, Tung-Chun Lee i Peer Fischer. "Dynamic Inclusion Complexes of Metal Nanoparticles Inside Nanocups". Angewandte Chemie 127, nr 23 (8.05.2015): 6834–38. http://dx.doi.org/10.1002/ange.201500635.
Pełny tekst źródłaRozprawy doktorskie na temat "Metal complexes and nanoparticles"
Zapiter, Joan Marie Diangson. "Transition Metal Complexes Anchored on Europium Oxide Nanoparticles". Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/24786.
Pełny tekst źródłaMaster of Science
Kamras, Brian Leon. "Application-Focused Investigation of Monovalent Metal Complexes for Nanoparticle Synthesis". Thesis, University of North Texas, 2019. https://digital.library.unt.edu/ark:/67531/metadc1538771/.
Pełny tekst źródłaLuska, Kylie. "The catalytic application of ionic liquid-stabilized metal nanoparticles and molecular complexes". Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110575.
Pełny tekst źródłaLes liquides ioniques (LIs) ont fait l'objet d'une attention considérable en tant qu'alternatives potentielles aux solvants à base de composés organiques volatiles du fait de leur faible pression de vapeur saturante et de la facilité avec laquelle on peut les récupérer et les recycler. La recherche sur les LIs a par ailleurs révélé de nombreuses propriétés telles que : une grande stabilité chimique et thermique, de bonnes solubilités pour les gaz, une large fenêtre de stabilité électrochimique, une bonne conductivité électrique, une bonne mobilité ionique et une immiscibilité avec certains solvants organiques et l'eau. L'exploitation de ces propriétés ont étendues le champ des applications pour comprendre : la chimie analytique, la catalyse, l'électrochimie, la nanotechnologie, la synthèse et la purification. Cette thèse traite de l'utilisation des LIs pour la synthèse de nanoparticules (NPs) métalliques et de complexes, ainsi que de leur utilisation en catalyse biphasique. Des NPs métalliques ont été synthétisées directement dans les LIs à base de cations imidazolium ou phosphonium. Ces LIs jouent le rôle de solvant et de stabilisants électrostatiques pour les NPs. Des LIs fonctionnalisés avec une espèce ligante (i.e. un thiolate ou une phosphine), appelés LIs fonctionnalisés (LIFs), ont été employés pour la synthèse de NPs pour améliorer leur stabilité par attachement direct du LI à la surface métallique. Les NPs de métaux de transition ainsi obtenues sont très actives en catalyse biphasique d'hydrogénation des alcènes et des arènes et recyclables. Les LIFs ont également été employés comme ligands pour des complexes moléculaires utilisés en catalyse biphasique d'hydroformylation des oléfines à longue chaine. Au centre de cette étude, les paramètres moléculaires des LIs (i.e. le groupement cationique, la longueur de la chaine alkyle, le contre-ion) se sont révélés influer sur les propriétés des NPs métalliques et des complexes moléculaires (i.e. la taille des NPs, leur bande plasmon, leur stabilité en condition catalytique, leur activité catalytique et leur sélectivité). Les LIs constituent une classe de composés hautement versatiles, qui permettent le contrôle des propriétés des espèces métalliques qu'ils stabilisent.
Rogers, Nicola Jane. "The development of gold nanoparticles labelled with transition metal complexes for imaging applications". Thesis, University of Birmingham, 2014. http://etheses.bham.ac.uk//id/eprint/5058/.
Pełny tekst źródłaYakushev, I. A., N. Y. Kozitsyna, O. N. Kondratyeva, M. N. Vargaftik i I. I. Moiseev. "Mixed-Metal Palladium(II) Complexes: a Way from Heterometallic Carboxylates to Bimetallic Nanoparticles". Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35239.
Pełny tekst źródłaThangwane, Selaelo Christabel. "Synthesis and characterization of substituted dithiocarbamates ligands and complexes as a source of metal (Pb, Ni & Co) sulphide nanoparticles". Thesis, Vaal University of Technology, 2017. http://hdl.handle.net/10352/396.
Pełny tekst źródłaLead, nickel and cobalt dithiocarbamates complexes were synthesized using methanol and water as solvents. All complexes were refluxed at 60 °C, cooled at room temperature, washed with methanol to remove the impurities and dried under the fume hood. A combination of Fourier transformer infrared (FTIR), elemental analysis (EA) and thermogravimetric analysis (TGA) were used to characterize these complexes. There was shifting of bands from low to high frequencies of the dithiocarbamates complexes compared to benzimidazole derivatives. The absence of the N-H band and the presence of new C=S bands confirmed that the complexes can be used in the preparation of metal sulphide nanoparticles. Elemental analysis showed that there was a percentage mismatch for the complexes I, III, IV and V. Complexes II and VI calculated percentages were within the limits with the found percentages except for sulphur which was low. The TGA curves decomposed to form a mixture of metal and metal sulphides for complex I, II, III and IV except for complex VI which gave metal sulphide only. All benzimidazole complexes decomposed at higher temperatures and were considered as stable complexes. Lead sulphide (PbS) is an important group IV-VI metal chalcogenide semiconductor. It has a direct narrow band gap of 0.41 eV at 300K and a large excitonic Bohr radius of 18 nm. Lead sulphide absorption band can be tuned to anywhere between near IR to UV (0.4μm) covering the entire visible spectrum, while achieving the quantum confinement region. The synthesis of lead sulphide nanoparticles was conducted by varying the effect of the reaction conditions such as the type of capping agents and temperature. Lead dithiocarbamate complex derived from benzimidazole, [Pb(S2N2C8H5)2] was thermolysed in hexadecylamine (HDA) and trioctylphosphine oxide (TOPO) at different reaction temperatures (140, 160 and 180 °C) to produce HDA and TOPO capped PbS nanoparticles. The nanoparticles were characterized using X-ray diffraction (XRD) for structural analysis, transmission electron microscopy (TEM) for shape and size, Ultraviolet visible (UV/Vis) and Photoluminescence (PL) spectroscopy for optical properties. An increase in temperature gave a decrease in the sizes of the nanoparticles when using the HDA capped lead benzimidazole dithiocarbamate complex. The observed morphology was cubes. TOPO capped lead benzimidazole dithiocarbamate complex gave no specific trend when temperature was varied. A cross-like layer with quasi spherical particles on top was observed at 160 °C. At 180 °C, the cross-like layer decomposed into rods- like materials with quasi spherical particles on top for TOPO capped PbS nanoparticles. For lead 2-methylbenzimidazole [Pb(S2N2C9H7)2] dithiocarbamate complex, TOPO capped PbS produced agglomerated cubic morphology at low temperature but as the temperature was increased agglomerated cylindrical shapes were observed. HDA capped PbS produced polydispersed nanocubes which were increasing in size when the temperature was increased. Nanoparticles displayed a blue shift in band edges with good photoluminescence behaviour which was red shifted from their respective band edges all temperatures and capping agents. XRD confirmed the crystal structure of cubic phase (galena) of PbS at all temperatures except for HDA capped PbS nanoparticles at 140 °C from lead benzimidazole dithiocarbamate complex which confirmed the crystal structure of face-centred cubic phase of PbS nanoparticles. Nickel sulphide has much more complicated phase diagram than cobalt sulfides and iron sulfides. Their chemical composition has many crystalline phases such as α-NiS, β=NiS, NiS2, Ni3S2, Ni3S4, Ni7S6 and Ni9S8. Ni3S2 phase has shown potential as a low-cost counter electrode material in dye sensitised solar cells, while the α-NiS phase has been applied as a cathode Material in lithium-ion batteries. The synthesis of nickel sulphide nanoparticles was done by varying the effect of the reaction conditions such concentration and temperature. Nickel benzimidazole dithiocarbamate [Ni(S2N2C8H5)2] and nickel 2-methylbenzimidazole [Ni (S2N2C9H7)2] dithiocarbamates complexes were thermolysed in hexadecylamine (HDA) at different reaction temperatures (140, 160 and 180 °C) and precursor concentrations (0.30, 0.35 and 0.40 g) to produce HDA capped NiS nanoparticles. It was observed that increasing both temperature and precursor concentration increased the size of the nanoparticles. Anisotropic particles were observed for both complexes when varying precursor concentration and temperature. Nickel benzimidazole dithiocarbamate complex produced stable shapes (spheres and cubes) of nickel sulphide nanoparticles. Nickel 2-methylbenzimidazole dithiocarbamate complex produced a mixture of spheres, cubes, triangles and rods nickel sulphide nanoparticles at all concentrations. But when varying temperature, it only produced that mixture at 160 °C. The optical measurements supported the presence of smaller particles at all temperatures and concentrations. XRD showed the presence of C7OS8 and pure nickel as impurities. However, the crystal structure of cubic Ni3S4 was observed at low temperatures and an introduction of monoclinic NixS6 at high temperature (180 °C) when varying temperature for both complexes. When varying concentration using nickel benzimidazole dithiocarbamate complex, XRD showed the presence of NiSO4.6H2O impurities at high temperatures. At 160 °C a mixture of hexagonal NiS and cubic Ni3S4 was observed. At low temperatures only nickel as a metal was found as an impurity and the crystal structure of cubic Ni3S4 was observed. When nickel 2-methylbenzimidazole complex was used, C7OS8 and pure nickel were found as impurities but the crystal structure of cubic Ni3S4 was observed. Cobalt sulphide (CoS) belongs to the family of group II-IV compounds with considerable potential for application in electronic devices. They have a complex phase diagram and their chemical composition have many phases such as Co4S3, Co9S8, CoS, Co1-xS, Co3S4, Co2S3 and CoS2. The synthesis of cobalt sulphide nanoparticles was conducted by varying the effect of temperature on size and shape of the nanoparticles. Nickel benzimidazole dithiocarbamate, [Ni(S2N2C8H5)2] and nickel 2-methylbenzimidazole [Ni(S2N2C9H7)2] complexes were thermolysed in hexadecylamine (HDA) at different reaction temperatures (140, 160 and 180 °C) to produce HDA capped CoS nanoparticles. Cobalt benzimidazole dithiocarbamate complex produced close to spherical shapes nanoparticles at all temperatures. The images showed that as temperature was increased, the size of the particles decreased. All the main reflection peaks were indexed to face-centred cubic Co3S4 and there were some impurities of C7OS8 at all temperatures. The optical measurements supported the presence of smaller particles at all temperatures. Cobalt 2-methylbenzimidazole dithiocarbamate complex produced big and undefined morphology. The optical properties were also featureless and XRD only showed impurities of C7OS8. The impurity is thought to be generated from a side reaction between benzimidazole and carbon disulphide to give this persistent organic moiety.
Roffey, A. R. "Dithiocarbamate complexes as single source precursors to metal sulfide nanoparticles for applications in catalysis". Thesis, University College London (University of London), 2014. http://discovery.ucl.ac.uk/1437012/.
Pełny tekst źródłaTilbury, Rhys David. "Investigation into Electronic Interactions Between Tetrazolato Complexes and Metal Nanoparticles Synthesised via Laser Ablation". Thesis, Curtin University, 2017. http://hdl.handle.net/20.500.11937/57109.
Pełny tekst źródłaZalich, Michael Andrew. "Physical Properties of Magnetic Macromolecule-Metal and Macromolecule-Metal Oxide Nanoparticle Complexes". Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/27528.
Pełny tekst źródłaPh. D.
Eriksson, Kristofer. "Development and Applications of Surface-Confined Transition Metal Complexes : Heterogeneous Catalysis and Anisotropic Particle Surfaces". Doctoral thesis, Stockholms universitet, Institutionen för organisk kemi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-88215.
Pełny tekst źródłaAt the time of doctoral defence the following paper were unpublished and had a status as follows: Paper1: Manuscript; Paper 4: Manuscript
Książki na temat "Metal complexes and nanoparticles"
Thota, Sreekanth, i Debbie C. Crans. Metal Nanoparticles. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527807093.
Pełny tekst źródłaCapek, Ignác. Noble Metal Nanoparticles. Tokyo: Springer Japan, 2017. http://dx.doi.org/10.1007/978-4-431-56556-7.
Pełny tekst źródłaKanchi, Suvardhan, i Shakeel Ahmed, red. Green Metal Nanoparticles. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119418900.
Pełny tekst źródłaTomasik, Piotr. Pyridine-metal complexes. New York: Wiley, 1985.
Znajdź pełny tekst źródłaHartley, F. R. Supported Metal Complexes. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5247-8.
Pełny tekst źródłaVoloshin, Yan, Irina Belaya i Roland Krämer. Cage Metal Complexes. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56420-3.
Pełny tekst źródłaCiardelli, F., E. Tsuchida i D. Wöhrle, red. Macromolecule-Metal Complexes. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-60986-2.
Pełny tekst źródłaTomasik, Piotr. Pyridine-metal complexes. New York: Wiley, 1985.
Znajdź pełny tekst źródłaTomasik, Piotr. Pyridine-metal complexes. Redaktorzy Ratajewicz Zbigniew, Newkome George R i Strekowski Lucjan. New York: Wiley, 1985.
Znajdź pełny tekst źródłaTomasik, Piotr. Pyridine-metal complexes. Redaktorzy Ratajewicz Zbigniew, Newkome George R i Strekowski Lucjan. New York: Wiley, 1985.
Znajdź pełny tekst źródłaCzęści książek na temat "Metal complexes and nanoparticles"
Sau, Tapan K., i Andrey L. Rogach. "Colloidal Synthesis of Noble Metal Nanoparticles of Complex Morphologies". W Complex-Shaped Metal Nanoparticles, 7–90. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527652570.ch1.
Pełny tekst źródłaHerrmann, Anne-Kristin, Nadja C. Bigall, Lehui Lu i Alexander Eychmüller. "Ordered and Nonordered Porous Superstructures from Metal Nanoparticles". W Complex-Shaped Metal Nanoparticles, 339–59. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527652570.ch10.
Pełny tekst źródłaNoguez, Cecilia, i Ana L. González. "Localized Surface Plasmons of Multifaceted Metal Nanoparticles". W Complex-Shaped Metal Nanoparticles, 361–93. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527652570.ch11.
Pełny tekst źródłaKlar, Thomas A., i Jochen Feldmann. "Fluorophore-Metal Nanoparticle Interactions and Their Applications in Biosensing". W Complex-Shaped Metal Nanoparticles, 395–427. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527652570.ch12.
Pełny tekst źródłaJäckel, Frank, i Jochen Feldmann. "Surface-Enhanced Raman Scattering Using Complex-Shaped Metal Nanostructures". W Complex-Shaped Metal Nanoparticles, 429–54. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527652570.ch13.
Pełny tekst źródłaGovorov, Alexander O., Zhiyuan Fan i Alexander B. Neiman. "Photothermal Effect of Plasmonic Nanoparticles and Related Bioapplications". W Complex-Shaped Metal Nanoparticles, 455–75. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527652570.ch14.
Pełny tekst źródłaSoh, Jun Hui, i Zhiqiang Gao. "Metal Nanoparticles in Biomedical Applications". W Complex-Shaped Metal Nanoparticles, 477–519. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527652570.ch15.
Pełny tekst źródłaMai, Nguyen T., Derrick Mott i Shinya Maenosono. "Anisotropic Nanoparticles for Efficient Thermoelectric Devices". W Complex-Shaped Metal Nanoparticles, 521–43. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527652570.ch16.
Pełny tekst źródłaCui, Chun-Hua, i Shu-Hong Yu. "Controlling Morphology in Noble Metal Nanoparticles via Templating Approach". W Complex-Shaped Metal Nanoparticles, 91–116. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527652570.ch2.
Pełny tekst źródłaTian, Na, Yu-Hua Wen, Zhi-You Zhou i Shi-Gang Sun. "Shape-Controlled Synthesis of Metal Nanoparticles of High Surface Energy and Their Applications in Electrocatalysis". W Complex-Shaped Metal Nanoparticles, 117–65. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527652570.ch3.
Pełny tekst źródłaStreszczenia konferencji na temat "Metal complexes and nanoparticles"
Bhanjana, Gaurav, Neeraj Kumar, Rajesh Thakur, Neeraj Dilbaghi, Sandeep Kumar, S. K. Tripathi, Keya Dharamvir, Ranjan Kumar i G. S. S. Saini. "Antimicrobial Activity of Metal & Metal Oxide Nanoparticles Interfaced With Ligand Complexes Of 8-Hydroxyquinoline And α-Amino Acids". W INTERNATIONAL CONFERENCE ON ADVANCES IN CONDENSED AND NANO MATERIALS (ICACNM-2011). AIP, 2011. http://dx.doi.org/10.1063/1.3653665.
Pełny tekst źródłaWalton, Finlay, Song Tang, Weizhen Li i Steven L. Neale. "Patterning ultrafine metal nanoparticles using optoelectronic tweezers (OET)". W Complex Light and Optical Forces XIV, redaktorzy David L. Andrews, Enrique J. Galvez i Halina Rubinsztein-Dunlop. SPIE, 2020. http://dx.doi.org/10.1117/12.2546214.
Pełny tekst źródłaZimmermann, Kristen A., Jianfei Zhang, Harry Dorn, Christopher Rylander i Marissa Nichole Rylander. "Synthesis and Cytotoxicity Analysis of Carbon Nanohorn-Quantum Dot Complexes". W ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53968.
Pełny tekst źródłaSun, Greg, i Jacob B. Khurgin. "Coupled Mode Theory of Field Enhancement in Complex Metal Nanoparticles". W Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/qels.2011.qtuh5.
Pełny tekst źródłaAvramenko, Valentin, Vitaly Mayorov, Dmitry Marinin, Alexander Mironenko, Marina Palamarchuk i Valentin Sergienko. "Macroporous Catalysts for Hydrothermal Oxidation of Metallorganic Complexes at Liquid Radioactive Waste Treatment". W ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2010. http://dx.doi.org/10.1115/icem2010-40186.
Pełny tekst źródłaMyneni, Satish, Sara Thomas i Bhoopesh Mishra. "Microbe-Metal Interactions: Novel High Energy-Resolution XANES Spectroscopy of Zn and Hg Complexes and Nanoparticles at Bacteria-Water Interfaces". W Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.1877.
Pełny tekst źródłaWu, Ye, Jian Xu i Ruyan Guo. "Achieving near-infrared deep tissue imaging via metal organic complex nanoparticles". W Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications XIII, redaktorzy Shizhuo Yin i Ruyan Guo. SPIE, 2019. http://dx.doi.org/10.1117/12.2534826.
Pełny tekst źródłaLeeladhar, Rajesh, Wei Xu i Chang-Hwan Choi. "Effects of Nanofluids on Droplet Evaporation and Wetting on Nanoporous Superhydrophobic Surfaces". W ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18551.
Pełny tekst źródłaJo, Byeongnam, Seunghwan Jung, Donghyun Shin i Debjyoti Banerjee. "Anomalous Rheological Behavior of Complex Fluids (Nanofluids)". W ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64091.
Pełny tekst źródłaTavakoli, Mahmoud, Mohammad H. Malakooti, Hugo Paisana, Yunsik Ohm, Daniel Green Marques, Pedro Alhais Lopes, Ana P. Piedade, Anibal T. de Almeida i Carmel Majidi. "Fabrication of Soft and Stretchable Electronics Through Integration of Printed Silver Nanoparticles and Liquid Metal Alloy". W ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/smasis2018-8007.
Pełny tekst źródłaRaporty organizacyjne na temat "Metal complexes and nanoparticles"
Choudhary, Ruplal, Victor Rodov, Punit Kohli, Elena Poverenov, John Haddock i Moshe Shemesh. Antimicrobial functionalized nanoparticles for enhancing food safety and quality. United States Department of Agriculture, styczeń 2013. http://dx.doi.org/10.32747/2013.7598156.bard.
Pełny tekst źródłaChefetz, Benny, Baoshan Xing, Leor Eshed-Williams, Tamara Polubesova i Jason Unrine. DOM affected behavior of manufactured nanoparticles in soil-plant system. United States Department of Agriculture, styczeń 2016. http://dx.doi.org/10.32747/2016.7604286.bard.
Pełny tekst źródłaWhite, Carter James. Selenophene transition metal complexes. Office of Scientific and Technical Information (OSTI), lipiec 1994. http://dx.doi.org/10.2172/10190649.
Pełny tekst źródłaCotton, F. A., i S. C. Haefner. Metal-metal multiply bonded complexes of technetium. Final report. Office of Scientific and Technical Information (OSTI), marzec 1995. http://dx.doi.org/10.2172/434856.
Pełny tekst źródłaLawson, Chris M., i Gary M. Gray. New Metal Organic Nonlinear Optical Complexes. Fort Belvoir, VA: Defense Technical Information Center, grudzień 2000. http://dx.doi.org/10.21236/ada391105.
Pełny tekst źródłaAikens, Christine M. Structure and Optical Properties of Noble Metal Nanoparticles. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2012. http://dx.doi.org/10.21236/ada575706.
Pełny tekst źródłaAikens, Christine M. Structure and Optical Properties of Noble Metal Nanoparticles. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2012. http://dx.doi.org/10.21236/ada575836.
Pełny tekst źródłaSharp, P. R. Late transition metal oxo and imido complexes. Office of Scientific and Technical Information (OSTI), grudzień 1992. http://dx.doi.org/10.2172/7017245.
Pełny tekst źródłaFujita, Etsuko. Photoreduction of CO{sub 2} using metal complexes. Office of Scientific and Technical Information (OSTI), kwiecień 1996. http://dx.doi.org/10.2172/211478.
Pełny tekst źródłaCrosby, G. A. Investigations of charge-separation processes in metal complexes. Office of Scientific and Technical Information (OSTI), luty 1991. http://dx.doi.org/10.2172/5943145.
Pełny tekst źródła