Gotowa bibliografia na temat „Metagratings”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Metagratings”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Metagratings"
Uzair, Mohammad, Xiao Li, Yangyang Fu i Chen Shen. "Diffraction in phase gradient acoustic metagratings: multiple reflection and integer parity design". INTER-NOISE and NOISE-CON Congress and Conference Proceedings 263, nr 3 (1.08.2021): 3167–75. http://dx.doi.org/10.3397/in-2021-2320.
Pełny tekst źródłaTsai, Wei-Cheng, Chia-Hsun Chang, Tai-Cherng Yu, Yi-Hsuan Huang, Chi-Wai Chow, Yu-Heng Hong, Hao-Chung Kuo i Yao-Wei Huang. "High-Efficiency and Large-Angle Homo-Metagratings for the Near-Infrared Region". Photonics 11, nr 5 (24.04.2024): 392. http://dx.doi.org/10.3390/photonics11050392.
Pełny tekst źródłaMei, Jun, Lijuan Fan i Xiaobin Hong. "Elastic Metagratings with Simultaneous Modulation of Reflected and Transmitted Waves". Crystals 12, nr 7 (24.06.2022): 901. http://dx.doi.org/10.3390/cryst12070901.
Pełny tekst źródłaRa’di, Younes, i Andrea Alù. "Nonreciprocal Wavefront Manipulation in Synthetically Moving Metagratings". Photonics 7, nr 2 (18.04.2020): 28. http://dx.doi.org/10.3390/photonics7020028.
Pełny tekst źródłaLin, Chuan-En, Chih-Wei Weng, Chao-Chang Hu i Peichen Yu. "P‐227: Late‐News Poster: Design Freeform Metagratings for Eye‐glow Attenuation in Diffractive AR Waveguides". SID Symposium Digest of Technical Papers 55, nr 1 (czerwiec 2024): 1567–69. http://dx.doi.org/10.1002/sdtp.17857.
Pełny tekst źródłaRa’di, Younes, i Andrea Alù. "Reconfigurable Metagratings". ACS Photonics 5, nr 5 (12.03.2018): 1779–85. http://dx.doi.org/10.1021/acsphotonics.7b01528.
Pełny tekst źródłaKOURCHI, Hasna, Simon BERNARD, Farid CHATI i Fernand LéON. "Metagratings for underwater acoustic wavefront manipulation". INTER-NOISE and NOISE-CON Congress and Conference Proceedings 270, nr 9 (4.10.2024): 2231–39. http://dx.doi.org/10.3397/in_2024_3153.
Pełny tekst źródłaPanda, Soumyashree S., i Ravi S. Hegde. "A learning based approach for designing extended unit cell metagratings". Nanophotonics 11, nr 2 (8.12.2021): 345–58. http://dx.doi.org/10.1515/nanoph-2021-0540.
Pełny tekst źródłaShramkova, Oksana, Valter Drazic, Guillaume Bourcin, Bobin Varghese, Laurent Blondé i Valérie Allié. "Metagrating solutions for full color single-plate waveguide combiner". EPJ Applied Metamaterials 9 (2022): 5. http://dx.doi.org/10.1051/epjam/2022003.
Pełny tekst źródłaRaadi, Younes, i Andrea Alu. "Metagratings for Efficient Wavefront Manipulation". IEEE Photonics Journal 14, nr 1 (luty 2022): 1–13. http://dx.doi.org/10.1109/jphot.2021.3136202.
Pełny tekst źródłaRozprawy doktorskie na temat "Metagratings"
Tan, Zhen. "Electromagnetic metagratings for efficient wavefront manipulation". Electronic Thesis or Diss., Paris 10, 2024. http://www.theses.fr/2024PA100031.
Pełny tekst źródłaCompared to traditional metasurfaces, metagratings have demonstrated pronounced advantages in efficient wavefront manipulation in recent years. These advantages primarily stem from two key factors: first, metagratings effectively eliminate wave impedance mismatch between incoming and outgoing waves, thus facilitating near-optimal efficiency in wavefront manipulation. Second, the sparsely arranged and simplified structure of metagratings renders them significantly easier to fabricate compared to traditional metasurfaces, which often entail complex structural resolution requirements particularly at high frequencies. This doctoral research endeavors to establish a more intuitive and rigorous design methodology for metagrating-based wavefront manipulation while also exploring novel avenues in the domain. Conducted jointly by Université Paris Nanterre and Xi’an Jiaotong University, the study starts with a comprehensive analysis of the electromagnetic characteristics inherent to metagratings, aiming to elucidate the fundamental principles governing wavefront manipulation. This analysis encompasses the derivation of reflection and transmission coefficients in multilayered media, examination of radiation characteristics, and meticulous considerations for achieving optimal wavefront manipulation. Subsequent investigations deal with the design intricacies of reflective metagratings, addressing challenges and devising strategies for both single-beam and multi-beam radiations and for electromagnetic absorption, exploring the influence of diverse structural configurations on absorption bandwidth. Notably, the concept of zero load-impedance metagratings is introduced and potential applications are explored particularly in high-frequency band scenarios. Finally, the research extends its exploration to transmissive metagratings, aiming to demonstrate their capabilities in achieving diverse wavefront manipulations, encompassing anomalous reflection, anomalous refraction, beam splitting, uni- and bi-directional wave absorption, and asymmetrical wavefront manipulation
Kourchi, Hasna. "Μétaréseaux pοur la réflexiοn et la transmissiοn anοrmales de frοnts d’οnde acοustique dans l’eau". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH36.
Pełny tekst źródłaA metagrating is a periodic assembly of scatterers designed to reflect or refract a wave toward an anomalous direction, not predicted by Snell's law. In this work, we designed, fabricated, and experimentally characterized such metagratings for the control of ultrasonic waves in water, using brass tubes and cylinders as well as 3D-printed plastic supports. These metagratings enable the redirection of an incident wavefront to an arbitrarily desired direction with high efficiency (close to 100%), both in reflection on a surface (e.g., the water/air interface) and in transmission. The theoretical approach is based on the principles of Bragg diffraction and constructive and destructive wave interactions. The results of this thesis demonstrate the efficiency of metagratings in inducing acoustic phenomena such as retroreflection and asymmetric wave response, achieved through the use of resonant and non-resonant structures, validated by finite element simulations and experiments. This research opens new perspectives for the manipulation of underwater acoustic waves, with potential applications in the fields of wave detection, absorption, and reflection in marine environments
Papou, Uladzislau. "Conformal and reconfigurable sparse metasurfaces : advanced analytical models and antenna applications". Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASC027.
Pełny tekst źródłaThis PhD thesis deals with electromagnetic metasurfaces for wavefront manipulation represented by arrays of scatterers engineered at subwavelength scale. The manuscript develops novel analytical and numerical models that allow one to solve the inverse scattering problem by taking into account all interactions between elements of a metasurface. Specifically, the manuscript focuses on sparse arrays, periodic or not, of structured wires for the application to electronically reconfigurable antennas. The manuscript is divided into two main parts, one on periodic arrangements of wires called metagratings and one on sparse metasurfaces when there is no periodicity imposed. Each part is endorsed by experiments performed at microwave frequencies. In the first part, theoretical conditions for arbitrary control of the diffraction patterns with metagratings, whose period is composed of multiple individually-engineered wires, are established and importance of the near-field regulation is highlighted. Moreover, an analytical retrieval technique is developed and allows one to consider, with the help of full-wave simulations, arbitrarily structured wires for metagratings operating from microwave to optical domains. In the second part of the thesis, the analytical model of metagratings is generalized, from planar periodic, to arbitrarily-shaped non-periodic distributions of wires by means of numerical calculation of a Green’s function. The concept is applied to design sparse metasurfaces in Fabry-Perot cavity and semi-cylindrical antenna configurations. Finally, the approach is applied to design a reconfigurable planar sparse metasurface. A fabricated sample is exploited to experimentally demonstrate dynamic control of the far-field radiation pattern and the near-field intensity distribution. As such beam-steering, multi-beam manipulation and subdiffraction focusing are shown
Części książek na temat "Metagratings"
Deng, Zi-Lan, Xiangping Li i Guixin Li. "Surface-Wave and Metagrating Holography". W Metasurface Holography, 51–59. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-031-02386-6_6.
Pełny tekst źródłaRane, Shreeya, i Dibakar Roy Chowdhury. "Excitation of Evanescent Orders by Employing Metallic Metagrating". W Lecture Notes in Electrical Engineering, 101–5. Singapore: Springer Nature Singapore, 2024. https://doi.org/10.1007/978-981-97-4760-3_15.
Pełny tekst źródłaZhang, Hong, Yuancheng Fan, Yali Zeng, Zhehao Ye, Hao Yue, Weixi Qiu, Ziyi Xu, Zhenning Yang i Fuli Zhang. "Broadband and Wide-Angle Terahertz Metagrating Based on Fractal Structure". W Springer Proceedings in Physics, 161–65. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-3913-4_31.
Pełny tekst źródłaStreszczenia konferencji na temat "Metagratings"
Zhang, Ruimeng, Jiahui Ji, Ziang Jiang, Shixiong Wang i Jianjia Yi. "Microwave Bifunctional Polarization-selective Metagratings". W 2024 Photonics & Electromagnetics Research Symposium (PIERS), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/piers62282.2024.10618632.
Pełny tekst źródłaZhou, Wei, i Xiao Ji. "Design of Reconfigurable Dual Polarized Metagratings". W 2024 International Applied Computational Electromagnetics Society Symposium (ACES-China), 1–3. IEEE, 2024. http://dx.doi.org/10.1109/aces-china62474.2024.10699757.
Pełny tekst źródłaFoteinopoulou, Stavroula. "Polarized asymmetric transmission with passive all-dielectric metagratings". W Laser Science, LW7F.3. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/ls.2024.lw7f.3.
Pełny tekst źródłade Galarreta, Carlota Ruiz, Joe Shields, Miguel Alvarez Alegria, C. David Wright, Rosalia Serna i Jan Siegel. "Tailoring the Diffraction Characteristics of Reflective Metagratings Employing One-Step Residue-Free UV Laser Interference Patterning". W CLEO: Applications and Technology, JTu2A.182. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jtu2a.182.
Pełny tekst źródłaMarcus, Sherman W., i Ariel Epstein. "Frequency-Agile Sliding Metagratings for Dynamic Wave Control". W 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI), 79–80. IEEE, 2024. http://dx.doi.org/10.1109/ap-s/inc-usnc-ursi52054.2024.10686881.
Pełny tekst źródłaPonti, Cristina, i Nikolaos L. Tsitsas. "Achieving Anomalous Refraction with Truncated All-Dielectric Two-Element Metagratings". W 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI), 81–82. IEEE, 2024. http://dx.doi.org/10.1109/ap-s/inc-usnc-ursi52054.2024.10685943.
Pełny tekst źródłaMarcus, Sherman W., i Ariel Epstein. "Sliding Metagratings for Dynamic Beam Switching via Rigorous Floquet-Bloch Theory". W 2024 IEEE International Conference on Microwaves, Communications, Antennas, Biomedical Engineering and Electronic Systems (COMCAS), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/comcas58210.2024.10666190.
Pełny tekst źródłaWang, Shaojie, Ke Chen i Yijun Feng. "Frequency Beam Scanning with Wideband Dualpolarized Metagratings for Large-angle Incidence". W 2024 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1–3. IEEE, 2024. http://dx.doi.org/10.1109/icmmt61774.2024.10672309.
Pełny tekst źródłaZhu, Jiang, Wei Wei, Bo Chen, Ping Tang, Xiangyu Zhao i Chongzhao Wu. "Three-dimensional metagratings integrated with liquid-galinstan for surface-enhanced infrared sensing". W 2024 49th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 1–2. IEEE, 2024. http://dx.doi.org/10.1109/irmmw-thz60956.2024.10697875.
Pełny tekst źródłaZhang, Cong, i Wen Qiao. "Large-format optical encryption device of vector light field based on pixelated metagratings". W 4th International Conference on Laser, Optics and Optoelectronic Technology (LOPET 2024), redaktorzy Suihu Dang i Manuel Filipe Costa, 41. SPIE, 2024. http://dx.doi.org/10.1117/12.3040046.
Pełny tekst źródła