Artykuły w czasopismach na temat „Metabolic responses”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Metabolic responses.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Metabolic responses”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Hunt, I. K., S. Martin i R. K. Hetzler. "METABOLIC RESPONSES TO SKATEBOARDING". Medicine & Science in Sports & Exercise 35, Supplement 1 (maj 2003): S155. http://dx.doi.org/10.1097/00005768-200305001-00858.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

LISTER, GEORGE. "Metabolic responses to hypoxia". Critical Care Medicine 21, Supplement (wrzesień 1993): S340. http://dx.doi.org/10.1097/00003246-199309001-00022.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Bradshaw, D. J. "Metabolic Responses in Biofilms". Microbial Ecology in Health and Disease 8, nr 6 (styczeń 1995): 313–16. http://dx.doi.org/10.3109/08910609509140112.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Evans, W. J. "Metabolic responses to exercise". Aging Clinical and Experimental Research 7, nr 6 (grudzień 1995): 471. http://dx.doi.org/10.1007/bf03324371.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Hooper, SB. "Fetal metabolic responses to hypoxia". Reproduction, Fertility and Development 7, nr 3 (1995): 527. http://dx.doi.org/10.1071/rd9950527.

Pełny tekst źródła
Streszczenie:
It has been known for may years that hypoxaemia in the fetus induces a number of biophysical, cardiovascular, endocrine and metabolic responses by the fetus, some of which are not sustained if the period of hypoxaemia is extended. For instance, fetal breathing and body movements and the circulating concentrations of many of the stress-related hormones return to control levels during prolonged periods of hypoxaemia. In particular, circulating fetal blood glucose concentrations gradually return to control levels, after an initial increase. The initial increase is primarily due to a catecholamine-mediated increase in glucose production from glycogen stores leading to a marked reduction in glycogen content. During prolonged periods of hypoxaemia, however, the decrease in fetal blood glucose concentrations is principally due to a decrease in the activity of the major enzymes responsible for glycogenolysis and not to a total depletion of glycogen stores. It is suggested that the decrease in enzyme activity could be due to a prostaglandin E2-mediated antagonism of catecholamine-activated glycogenolysis. In contrast, fetal blood lactate concentrations increase to a plateau after 4-5 h of hypoxaemia and remain at this elevated level for the duration of the hypoxaemia. Circulating lactate concentrations do not increase further, despite production by hypoxic tissues remaining high, due to an increase in lactate clearance by the placenta; under normal conditions the placenta releases lactate into the fetal circulation. It is considered that many of these changes are important adaptive responses which allow the fetus to survive in a sub-optimal intrauterine environment.
Style APA, Harvard, Vancouver, ISO itp.
6

Kang, Jie, Emily Raines, Joseph Rosenberg, Nicholas Ratamess, Fernando Naclerio i Avery Faigenbaum. "Metabolic Responses During Postprandial Exercise". Research in Sports Medicine 21, nr 3 (18.06.2013): 240–52. http://dx.doi.org/10.1080/15438627.2013.792088.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Martini, Wenjun. "Fibrinogen metabolic responses to trauma". Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 17, nr 1 (2009): 2. http://dx.doi.org/10.1186/1757-7241-17-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Hill, Andrew G., Jonathan Siegel, Jan Rounds i Douglas W. Wilmore. "Metabolic Responses to Interleukin-1". Annals of Surgery 225, nr 3 (marzec 1997): 246–51. http://dx.doi.org/10.1097/00000658-199703000-00002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Noy, Yael, i David Sklan. "Metabolic Responses to Early Nutrition". Journal of Applied Poultry Research 7, nr 4 (grudzień 1998): 437–51. http://dx.doi.org/10.1093/japr/7.4.437.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

TRACEY, KEVIN J., i ANTHONY CERAMI. "Metabolic Responses to Cachectin/TNF". Annals of the New York Academy of Sciences 587, nr 1 (czerwiec 1990): 325–31. http://dx.doi.org/10.1111/j.1749-6632.1990.tb00173.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Ganeshan, Kirthana, i Ajay Chawla. "Metabolic Regulation of Immune Responses". Annual Review of Immunology 32, nr 1 (21.03.2014): 609–34. http://dx.doi.org/10.1146/annurev-immunol-032713-120236.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Acerenza, Luis. "Metabolic Responses: Large and Small". Comments� on Theoretical Biology 8, nr 2-3 (1.03.2003): 279–320. http://dx.doi.org/10.1080/08948550302447.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Hetzler, Ronald K., Ian Hunt, Christopher D. Stickley i Iris F. Kimura. "Selected Metabolic Responses to Skateboarding". Research Quarterly for Exercise and Sport 82, nr 4 (grudzień 2011): 788–93. http://dx.doi.org/10.1080/02701367.2011.10599816.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Xiao, Wusheng, i Joseph Loscalzo. "Metabolic Responses to Reductive Stress". Antioxidants & Redox Signaling 32, nr 18 (20.06.2020): 1330–47. http://dx.doi.org/10.1089/ars.2019.7803.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Albers, G. J., J. Iwasaki, P. McErlean, P. P. Ogger, P. Ghai, T. E. Khoyratty, I. A. Udalova, C. M. Lloyd i A. J. Byrne. "IRF5 regulates airway macrophage metabolic responses". Clinical & Experimental Immunology 204, nr 1 (28.01.2021): 134–43. http://dx.doi.org/10.1111/cei.13573.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Sekine, Yusuke, Ryan Houston i Shiori Sekine. "Cellular metabolic stress responses via organelles". Experimental Cell Research 400, nr 1 (marzec 2021): 112515. http://dx.doi.org/10.1016/j.yexcr.2021.112515.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Knight, Kathryn. "METABOLIC RESPONSES AND UNIQUE ENVIRONMENTAL ADAPTATIONS". Journal of Experimental Biology 214, nr 2 (15.01.2011): iii—iv. http://dx.doi.org/10.1242/jeb.214.2.iii.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Herndon, David, Feng Zhang i William Lineaweaver. "Metabolic Responses to Severe Burn Injury". Annals of Plastic Surgery 88, nr 2 (kwiecień 2022): S128—S131. http://dx.doi.org/10.1097/sap.0000000000003142.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Batty, Matthew J., Gwladys Chabrier, Alanah Sheridan i Matthew C. Gage. "Metabolic Hormones Modulate Macrophage Inflammatory Responses". Cancers 13, nr 18 (17.09.2021): 4661. http://dx.doi.org/10.3390/cancers13184661.

Pełny tekst źródła
Streszczenie:
Macrophages are phagocytotic leukocytes that play an important role in the innate immune response and have established roles in metabolic diseases and cancer progression. Increased adiposity in obese individuals leads to dysregulation of many hormones including those whose functions are to coordinate metabolism. Recent evidence suggests additional roles of these metabolic hormones in modulating macrophage inflammatory responses. In this review, we highlight key metabolic hormones and summarise their influence on the inflammatory response of macrophages and consider how, in turn, these hormones may influence the development of different cancer types through the modulation of macrophage functions.
Style APA, Harvard, Vancouver, ISO itp.
20

Padilha, Heloisa Guarita, Cibele Aparecida Crispim, Ioná Zalcman Zimberg, Simon Folkard, Sérgio Tufik i Marco Túlio de Mello. "METABOLIC RESPONSES ON THE EARLY SHIFT". Chronobiology International 27, nr 5 (czerwiec 2010): 1080–92. http://dx.doi.org/10.3109/07420528.2010.489883.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Palmer, Clovis S. "Innate metabolic responses against viral infections". Nature Metabolism 4, nr 10 (20.10.2022): 1245–59. http://dx.doi.org/10.1038/s42255-022-00652-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Ludlam, Danielle, Stacey L. Beam, Wesley Hartlage, Sarah M. Henry, Michael W. Iwaskewcz, Erica L. Aikens i G. William Lyerly. "Metabolic And Cardiovascular Responses To Golf". Medicine & Science in Sports & Exercise 48 (maj 2016): 211. http://dx.doi.org/10.1249/01.mss.0000485635.12918.93.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Silverman, Norman A., i Sidney Levitsky. "Myocardial protection assessed by metabolic responses". Current Opinion in Cardiology 4, nr 2 (kwiecień 1989): 249–53. http://dx.doi.org/10.1097/00001573-198904000-00011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

BALLOR, DOUGLAS L., M. DANIEL BECQUE i VICTOR L. KATCH. "Metabolic responses during hydraulic resistance exercise". Medicine & Science in Sports & Exercise 19, nr 4 (sierpień 1987): 363???367. http://dx.doi.org/10.1249/00005768-198708000-00007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Dohm, G. L., R. T. Beeker, R. G. Israel i E. B. Tapscott. "Metabolic responses to exercise after fasting". Journal of Applied Physiology 61, nr 4 (1.10.1986): 1363–68. http://dx.doi.org/10.1152/jappl.1986.61.4.1363.

Pełny tekst źródła
Streszczenie:
Fasting before exercise increases fat utilization and lowers the rate of muscle glycogen depletion. Since a 24-h fast also depletes liver glycogen, we were interested in blood glucose homeostasis during exercise after fasting. An experiment was conducted with human subjects to determine the effect of fasting on blood metabolite concentrations during exercise. Nine male subjects ran (70% maximum O2 consumption) two counterbalanced trials, once fed and once after a 23-h fast. Plasma glucose was elevated by exercise in the fasted trial but there was no difference between fed and fasted during exercise. Lactate was significantly higher (P less than 0.05) in fasted than fed throughout the exercise bout. Fat mobilization and utilization appeared to be greater in the fasted trial as evidenced by higher plasma concentrations of free fatty acids, glycerol, and beta-hydroxybutyrate as well as lower respiratory exchange ratio in the fasted trial during the first 30 min of exercise. These results demonstrate that in humans blood glucose concentration is maintained at normal levels during exercise after fasting despite the depletion of liver glycogen. Homeostasis is probably maintained as a result of increased gluconeogenesis and decreased utilization of glucose in the muscle as a result of lowered pyruvate dehydrogenase activity.
Style APA, Harvard, Vancouver, ISO itp.
26

PETERSON, ANDREW T., JEFF STEFFEN, LARRY TERRY, JERRY DAVIS, JOHN P. PORCARI i CARL FOSTER. "Metabolic responses associated with deer hunting". Medicine & Science in Sports & Exercise 31, nr 12 (grudzień 1999): 1844. http://dx.doi.org/10.1097/00005768-199912000-00023.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Burke, Susan J., Michael D. Karlstad i J. Jason Collier. "Pancreatic Islet Responses to Metabolic Trauma". Shock 46, nr 3 (wrzesień 2016): 230–38. http://dx.doi.org/10.1097/shk.0000000000000607.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Essén–Gustavsson, B. "Metabolic responses of muscle to exercise". BSAP Occasional Publication 32 (2004): 1–9. http://dx.doi.org/10.1017/s0263967x00041185.

Pełny tekst źródła
Streszczenie:
AbstractMuscle is a tissue with a great plasticity due to the fact that it is composed of fibres having different contractile and metabolic properties. In horses, muscle metabolic responses to exercise are studied by taking biopsies from the gluteus medius muscle. Histochemical stains are used to identify slow contracting type I fibres and fast contracting type IIA and type IIB fibres and to evaluate fibre areas, capillary supply, oxidative capacity, glycogen and lipid content in a muscle. Biochemical analyses of substrates, metabolites and enzyme activities are performed either on a whole piece of muscle, on pools of fibres or on single fibres of identified type.All fibres contain glycogen whereas lipid is mainly found in type I and type IIA fibres that have smaller cross–sectional areas and a higher oxidative capacity than type IIB fibres. Large variations can be seen in metabolic profile between and within fibre types. The most common muscular adaptation to training is an increase in oxidative capacity, capillary density and an increase in the type IIA/IIB ratio. The order of recruitment of fibres during most types of exercise is from type I to type IIA and type IIB.The higher the intensity of exercise, the faster is the breakdown of glycogen. After racing (1640-2640m), and after high intense treadmill exercise, concentrations of lactate and inosine monophosphate (IMP) are increased in the muscle and concentrations of glycogen, adenosine triphosphate (ATP) and creatine phosphate (CP) decreased. Extremely low ATP and high IMP concentrations especially in some type II fibres are observed after racing.After exercise of low intensity and long duration glycogen and triglyceride stores in muscle are utilised, amino acid metabolism is enhanced and protein degradation may occur. After submaximal treadmill exercise to fatigue and after endurance rides glycogen is degraded and depletion occurs mainly in type I and type IIA fibres.Fibre type composition, substrate sources and differences in metabolic properties among fibres and the extent to which fibres are recruited are all factors that influence the metabolic responses of muscle to exercise. Biochemical analyses on whole muscle must be interpreted with caution since large variations in metabolic response to exercise occur among different fibres.
Style APA, Harvard, Vancouver, ISO itp.
29

Guest, Tod. "Hormonal and metabolic responses to trauma". Anaesthesia & Intensive Care Medicine 9, nr 9 (wrzesień 2008): 398–400. http://dx.doi.org/10.1016/j.mpaic.2008.07.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

SCHMITT, A., i R. UGLOW. "Metabolic responses of to progressive hypoxia". Aquatic Living Resources 11, nr 2 (marzec 1998): 87–92. http://dx.doi.org/10.1016/s0990-7440(98)80064-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Nicholson, Grainne. "Hormonal and metabolic responses to trauma". Anaesthesia & Intensive Care Medicine 6, nr 9 (wrzesień 2005): 313–14. http://dx.doi.org/10.1383/anes.2005.6.9.313.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Kugelberg, Elisabeth. "Complex metabolic responses to microbial stimuli". Nature Reviews Immunology 17, nr 2 (3.01.2017): 78–79. http://dx.doi.org/10.1038/nri.2016.148.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Hale, P. J., G. Garden, P. M. Horrocks, J. Crase, V. Hammond i M. Nattrass. "Metabolic and Hormonal Responses during Squash". Clinical Science 70, s13 (1.01.1986): 82P. http://dx.doi.org/10.1042/cs070082pa.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Garden, G., P. J. Hale, P. M. Horrocks, J. Crase, V. Hammond i M. Nattrass. "Metabolic and hormonal responses during squash". European Journal of Applied Physiology and Occupational Physiology 55, nr 4 (sierpień 1986): 445–49. http://dx.doi.org/10.1007/bf00422749.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Choi, Seung-Chul, Wei Li, Xiaojuan Zhang, Xiangyu Teng i Laurence Morel. "Autoreactive B cells have a specific metabolic response during humoral responses". Journal of Immunology 204, nr 1_Supplement (1.05.2020): 218.3. http://dx.doi.org/10.4049/jimmunol.204.supp.218.3.

Pełny tekst źródła
Streszczenie:
Abstract Germinal centers (GC) provide a unique microenvironment for B-cell affinity maturation and class-switching recombination to occur. We compared for the first time the metabolism of B cells between lupus-prone B6.Sle1.Sle2.Sle3 (TC) mice and B6 controls at steady state, as well as during T cell-dependent (TD) and T cell-independent (TI) immunizations. B cells from TC mice showed an elevated glycolysis and mitochondrial oxidative metabolism, which was normalized by inhibiting glycolysis with in vivo 2-deoxy-D-glucose (2DG) treatment. 2DG greatly reduced the production of TI-antigen-specific antibodies, but showed minimal effect with TD-antigens. In contrast, glutaminolysis inhibition with 6-Diazo-5-oxo-L-norleucine (DON) had a greater effect on TD than TI Ag-specific antibodies in both strains. Interestingly, 2DG, but not DON reduced TI-Ag-specific IgM in TC mice, whereas both 2DG and DON prevented Ag-specific IgM production in B6 mice. Thus, autoreactive and control B cells have different intrinsic metabolic requirements. Autoreactive B cells are more glycolytic, which mirrors our previous results showing that autoreactive TFH cells have opposite glucose and glutamine requirements. The requirement for glutamine in TD-responses could be due to a direct effect on GC B cells, or an indirect effect through TFH cells. Overall, these results predict that targeting glucose metabolism provides an effective therapeutic approach for systemic autoimmunity by eliminating both autoreactive TFH and B cells, although TI-responses may be reduced in lupus-prone mice.
Style APA, Harvard, Vancouver, ISO itp.
36

Goto, Kazushige. "Metabolic and endocrine responses to hypoxic exposure". Journal of Physical Fitness and Sports Medicine 2, nr 2 (2013): 215–20. http://dx.doi.org/10.7600/jpfsm.2.215.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Brown, John C., i Von D. Jolley. "Plant Metabolic Responses to Iron-Deficiency Stress". BioScience 39, nr 8 (wrzesień 1989): 546–51. http://dx.doi.org/10.2307/1310977.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Wang, Shufan, Gülnur Birol, Ewa Budzynski, Robert Flynn i Robert A. Linsenmeier. "Metabolic Responses to Light in Monkey Photoreceptors". Current Eye Research 35, nr 6 (14.05.2010): 510–18. http://dx.doi.org/10.3109/02713681003597255.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Żur, Joanna, Danuta Wojcieszyńska i Urszula Guzik. "Metabolic Responses of Bacterial Cells to Immobilization". Molecules 21, nr 7 (22.07.2016): 958. http://dx.doi.org/10.3390/molecules21070958.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Watkins, Chris B., i J. Zhang. "METABOLIC RESPONSES OF FRUIT TO CARBON DIOXIDE". Acta Horticulturae, nr 464 (marzec 1998): 345–50. http://dx.doi.org/10.17660/actahortic.1998.464.52.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

BRUSTOWICZ, ROBERT M., CLAUDE MONCORCE i BABU V. KOKA. "Metabolic Responses to Tourniquet Release in Children". Anesthesiology 67, nr 5 (1.11.1987): 792–94. http://dx.doi.org/10.1097/00000542-198711000-00027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Slupsky, Carolyn M., Andriy Cheypesh, Danny V. Chao, Hao Fu, Kathryn N. Rankin, Thomas J. Marrie i Paige Lacy. "Streptococcus pneumoniaeandStaphylococcus aureusPneumonia Induce Distinct Metabolic Responses". Journal of Proteome Research 8, nr 6 (5.06.2009): 3029–36. http://dx.doi.org/10.1021/pr900103y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Ballor, Douglas L., M. Daniel Becque i Victor L. Katch. "Metabolic Responses during Hydraulic Resistive Simulated Climbing". Research Quarterly for Exercise and Sport 59, nr 2 (czerwiec 1988): 165–68. http://dx.doi.org/10.1080/02701367.1988.10605495.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Cook, Alex, James Cook i Aaron Stoker. "Metabolic Responses of Meniscus to IL-1β". Journal of Knee Surgery 31, nr 09 (2.01.2018): 834–40. http://dx.doi.org/10.1055/s-0037-1615821.

Pełny tekst źródła
Streszczenie:
AbstractThis article identifies the potential mechanisms of action for meniscal degeneration in response to joint inflammation and potential contributions of the meniscus to the development and progression of osteoarthritis (OA). It was hypothesized that interleukin-1β (IL-1β) stimulation of meniscal explants would result in significant increases in nitric oxide (NO), matrix metalloproteinase (MMP) production and activity, and relevant cytokine production compared with controls. Canine meniscal explants (4 mm) were cultured for 21 days with (IL-1) or without (negative control [NC]) 50 ng/mL rcIL-1β (n = 6/group). Media were changed every 3 days and analyzed for MMP activity, ADAMTS-4 activity, MMP-1, MMP-2, MMP-3, MMP-9, MMP-13, NO, prostaglandin E2 (PGE2), IL-6, IL-8, monocyte chemotactic protein-1 (MCP-1), and keratinocyte-derived chemokine (KC) concentrations. Media NO and PGE2 concentrations were significantly higher in the IL-1 group at all time points except for days 9 and 12. The concentrations of MMP-13 were significantly higher in the IL-1 group at days 3, 6, 9, and 12. The production of MMP-2 was significantly lower in the IL-1 group on days 3 through 15. ADAMTS4 activity was significantly higher in the IL-1 group on days 6 through 18. MMP-3 concentrations and general MMP activity were significantly higher in the IL-1 group at all time points. Concentrations of IL-6, IL-8, MCP-1, and KC were significantly higher in the IL-1 group at most time points. Glycosaminoglycans (GAG) content decreased significantly (p = 0.009) in the IL-1 group compared with the NC group. Proinflammatory mediators appear to directly influence degradative processes in the meniscus, which in turn contribute to development and progression of OA by production of proinflammatory and degradative mediators. These findings have important clinical implications for the management of the degenerative meniscus and the osteoarthritic knee.
Style APA, Harvard, Vancouver, ISO itp.
45

Assmann, Nadine, i David K. Finlay. "Metabolic regulation of immune responses: therapeutic opportunities". Journal of Clinical Investigation 126, nr 6 (1.06.2016): 2031–39. http://dx.doi.org/10.1172/jci83005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Licker, M., A. Schweizer i F. E. Ralley. "Thermoregulatory and metabolic responses following cardiac surgery". European Journal of Anaesthesiology 13, nr 5 (wrzesień 1996): 502–10. http://dx.doi.org/10.1097/00003643-199609000-00015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Issartel, J. "Metabolic responses to cold in subterranean crustaceans". Journal of Experimental Biology 208, nr 15 (1.08.2005): 2923–29. http://dx.doi.org/10.1242/jeb.01737.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Luthman, J., G. Jonson i J. Persson. "Metabolic Responses to Norepinephrine in Hypocalcaemic Sheep". Zentralblatt für Veterinärmedizin Reihe A 19, nr 9 (13.05.2010): 769–74. http://dx.doi.org/10.1111/j.1439-0442.1972.tb00530.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Acerenza, Luis, i Fernando Ortega. "Modular metabolic control analysis of large responses". FEBS Journal 274, nr 1 (29.11.2006): 188–201. http://dx.doi.org/10.1111/j.1742-4658.2006.05575.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

ANDERSON, AMY E. "Metabolic Responses to Sulfur in Lucinid Bivalves". American Zoologist 35, nr 2 (kwiecień 1995): 121–31. http://dx.doi.org/10.1093/icb/35.2.121.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii