Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Mesoscopic transport in graphene.

Artykuły w czasopismach na temat „Mesoscopic transport in graphene”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Mesoscopic transport in graphene”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Xu, N., J. W. Ding, B. L. Wang, D. N. Shi i H. Q. Sun. "Transport properties of mesoscopic graphene rings". Physica B: Condensed Matter 407, nr 3 (luty 2012): 335–39. http://dx.doi.org/10.1016/j.physb.2011.10.049.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Racolta, D., i C. Micu. "The Aharonov-Bohm Effect and Transport Properties in Graphene Nanostructures". Annals of West University of Timisoara - Physics 57, nr 1 (1.12.2013): 52–60. http://dx.doi.org/10.1515/awutp-2015-0106.

Pełny tekst źródła
Streszczenie:
Abstract In this paper we discuss interplays between the Aharonov-Bohm effect and the transport properties in mesoscopic ring structures based on graphene. The interlayer interaction leads to a change of the electronic structure of bilayer graphene ring such that the electronic energy dispersion law exhibits a gap, either by doping one of the layers or by the application of an external perpendicular electric field. Gap adjustments can be done by varying the external electric field, which provides the possibility of obtaining mesoscopic devices based on the electronic properties of bilayer graphene. This opens the way to controllable manipulations of phase-coherent mesoscopic phenomena, as well as to Aharonov-Bohm oscillations depending on the height of the potential step and on the radius of the ring. For this purpose one resorts to a tight-binding model such as used to the description of conductance.
Style APA, Harvard, Vancouver, ISO itp.
3

Sánchez, Fernando, Vicenta Sánchez i Chumin Wang. "Independent Dual-Channel Approach to Mesoscopic Graphene Transistors". Nanomaterials 12, nr 18 (16.09.2022): 3223. http://dx.doi.org/10.3390/nano12183223.

Pełny tekst źródła
Streszczenie:
Graphene field-effect transistors (GFETs) exhibit unique switch and sensing features. In this article, GFETs are investigated within the tight-binding formalism, including quantum capacitance correction, where the graphene ribbons with reconstructed armchair edges are mapped into a set of independent dual channels through a unitary transformation. A new transfer matrix method is further developed to analyze the electron transport in each dual channel under a back gate voltage, while the electronic density of states of graphene ribbons with transversal dislocations are calculated using the retarded Green’s function and a novel real-space renormalization method. The Landauer electrical conductance obtained from these transfer matrices was confirmed by the Kubo–Greenwood formula, and the numerical results for the limiting cases were verified on the basis of analytical results. Finally, the size- and gate-voltage-dependent source-drain currents in GFETs are calculated, whose results are compared with the experimental data.
Style APA, Harvard, Vancouver, ISO itp.
4

Bhalla, Pankaj, i Surender Pratap. "Aspects of electron transport in zigzag graphene nanoribbons". International Journal of Modern Physics B 32, nr 12 (3.05.2018): 1850148. http://dx.doi.org/10.1142/s0217979218501485.

Pełny tekst źródła
Streszczenie:
In this paper, we investigate the aspects of electron transport in the zigzag graphene nanoribbons (ZGNRs) using the nonequilibrium Green’s function (NEGF) formalism. The latter is an esoteric tool in mesoscopic physics. It is used to perform an analysis of ZGNRs by considering potential well. Within this potential, the dependence of transmission coefficient, local density of states (LDOS) and electron transport properties on number of atoms per unit cell is discussed. It is observed that there is an increment in electron and thermal conductance with increasing number of atoms. In addition to these properties, the dependence of same is also studied in figure of merit. The results infer that the contribution of electrons to enhance the figure of merit is important above the crossover temperature.
Style APA, Harvard, Vancouver, ISO itp.
5

da Silva, Juliana M., Fernando A. F. Santana, Jorge G. G. S. Ramos i Anderson L. R. Barbosa. "Spin Hall angle in single-layer graphene". Journal of Applied Physics 132, nr 18 (14.11.2022): 183901. http://dx.doi.org/10.1063/5.0107212.

Pełny tekst źródła
Streszczenie:
We investigate the spin Hall effect in a single-layer graphene device with disorder and interface-induced spin–orbit coupling. Our graphene device is connected to four semi-infinite leads that are embedded in a Landauer–Büttiker setup for quantum transport. We show that the spin Hall angle of graphene devices exhibits mesoscopic fluctuations that are similar to metal devices. Furthermore, the product between the maximum spin Hall angle deviation and dimensionless longitudinal conductivity follows a universal relationship [Formula: see text]. Finally, we compare the universal relation with recent experimental data and numerically exact real-space simulations from the tight-binding model.
Style APA, Harvard, Vancouver, ISO itp.
6

João, Simão M., i João M. Viana Parente Lopes. "Non-linear optical response in disordered 2D materials". EPJ Web of Conferences 233 (2020): 03002. http://dx.doi.org/10.1051/epjconf/202023303002.

Pełny tekst źródła
Streszczenie:
Using KITE [1], a quantum transport software developed by ourselves, we explore the effect of disorder in the second-order con¬ductivity, aiming to reproduce mesoscopic samples under more realistic models of disorder. This work will be concerned about our most recent results with KITE. We will showcase and examine how different mod¬els of disorder affect the same system, experimenting with Anderson disorder and vacancies in gapped Graphene.
Style APA, Harvard, Vancouver, ISO itp.
7

Raineri, Vito, Emanuele Rimini i Filippo Giannazzo. "Mesoscopic Transport Properties in Exfoliated Graphene on SiO2/Si". Nanoscience and Nanotechnology Letters 3, nr 1 (1.02.2011): 55–58. http://dx.doi.org/10.1166/nnl.2011.1119.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

., Amardeep, i Vijay Kr Lamba. "Study and Modeling of Graphene-Boron-Nitride Heterostructures". SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology 14, nr 03 (15.07.2022): 337–40. http://dx.doi.org/10.18090/samriddhi.v14i03.14.

Pełny tekst źródła
Streszczenie:
When we talk about nano devices, the molecule and its interface with electrodes play a key role. So, one of the major objectives is to select an organic nanomaterial with extensive applications, which requires smart synthesis of appropriate materials and an understanding of their properties. Here we modeled a device, which not only adds another “protuberance” to learn about the transport properties of the molecule but also helps in grasping its use as a considerable material for future flexible electronics. Modeling of materials at the nano-level not only provides fundamental insight into the properties of crystalline defects but also gives a reasonable understanding of phase stability and learning of processes like atomic diffusion interface migration. For the development of devices at a mesoscopic and macroscopic level and with atomistic input parameters, this recognition serves as a guide. We tried to model how the layers of one type of molecule and the interaction of two different types of molecular layers control the junction charge transport characteristics.
Style APA, Harvard, Vancouver, ISO itp.
9

Nam Do, V., V. Hung Nguyen, P. Dollfus i A. Bournel. "Electronic transport and spin-polarization effects of relativisticlike particles in mesoscopic graphene structures". Journal of Applied Physics 104, nr 6 (15.09.2008): 063708. http://dx.doi.org/10.1063/1.2980045.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Skachko, I., X. Du, F. Duerr, A. Luican, D. A. Abanin, L. S. Levitov i E. Y. Andrei. "Fractional quantum Hall effect in suspended graphene probed with two-terminal measurements". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, nr 1932 (13.12.2010): 5403–16. http://dx.doi.org/10.1098/rsta.2010.0226.

Pełny tekst źródła
Streszczenie:
Recently, fractional quantization of two-terminal conductance was reported in suspended graphene. The quantization, which was clearly visible in fields as low as 2 T and persistent up to 20 K in 12 T, was attributed to the formation of an incompressible fractional quantum Hall state. Here, we argue that the failure of earlier experiments to detect the integer and fractional quantum Hall effect with a Hall-bar lead geometry is a consequence of the invasive character of voltage probes in mesoscopic samples, which are easily shorted out owing to the formation of hot spots near the edges of the sample. This conclusion is supported by a detailed comparison with a solvable transport model. We also consider, and rule out, an alternative interpretation of the quantization in terms of the formation of a p–n–p junction, which could result from contact doping or density inhomogeneity. Finally, we discuss the estimate of the quasi-particle gap of the quantum Hall state. The gap value, obtained from the transport data using a conformal mapping technique, is considerably larger than in GaAs-based two-dimensional electron systems, reflecting the stronger Coulomb interactions in graphene.
Style APA, Harvard, Vancouver, ISO itp.
11

Rozhkov, A. V., G. Giavaras, Yury P. Bliokh, Valentin Freilikher i Franco Nori. "Electronic properties of mesoscopic graphene structures: Charge confinement and control of spin and charge transport". Physics Reports 503, nr 2-3 (czerwiec 2011): 77–114. http://dx.doi.org/10.1016/j.physrep.2011.02.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Widianto, Eri, Shobih, Erlyta Septa Rosa, Kuwat Triyana, Natalita Maulani Nursam i Iman Santoso. "Graphene oxide as an effective hole transport material for low-cost carbon-based mesoscopic perovskite solar cells". Advances in Natural Sciences: Nanoscience and Nanotechnology 12, nr 3 (1.09.2021): 035001. http://dx.doi.org/10.1088/2043-6262/ac204a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Biel, Blanca, Alessandro Cresti, Rémi Avriller, Simon Dubois, Alejandro López-Bezanilla, François Triozon, X. Blase, Jean-Christophe Charlier i Stephan Roche. "Mobility gaps in disordered graphene-based materials: an ab initio -based tight-binding approach to mesoscopic transport". physica status solidi (c) 7, nr 11-12 (16.08.2010): 2628–31. http://dx.doi.org/10.1002/pssc.200983826.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Kadhim, Adam K., Mohammad R. Mohammad, Atheer I. Abd Ali i Mustafa K. A. Mohammed. "Reduced Graphene Oxide/Bi2O3 Composite as a Desirable Candidate to Modify the Electron Transport Layer of Mesoscopic Perovskite Solar Cells". Energy & Fuels 35, nr 10 (12.05.2021): 8944–52. http://dx.doi.org/10.1021/acs.energyfuels.1c00848.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Zhou, Huawei, Jie Yin, Zhonghao Nie, Zhaojin Yang, Dongjie Li, Junhu Wang, Xin Liu, Changzi Jin, Xianxi Zhang i Tingli Ma. "Earth-abundant and nano-micro composite catalysts of Fe3O4@reduced graphene oxide for green and economical mesoscopic photovoltaic devices with high efficiencies up to 9%". Journal of Materials Chemistry A 4, nr 1 (2016): 67–73. http://dx.doi.org/10.1039/c5ta06525a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Das, Mukunda P., i Frederick Green. "Mesoscopic transport revisited". Journal of Physics: Condensed Matter 21, nr 10 (13.02.2009): 101001. http://dx.doi.org/10.1088/0953-8984/21/10/101001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Weiss, C. "Coherently controlled mesoscopic transport". Laser Physics Letters 3, nr 4 (1.04.2006): 212–15. http://dx.doi.org/10.1002/lapl.200510084.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Horsell, D. W., A. K. Savchenko, F. V. Tikhonenko, K. Kechedzhi, I. V. Lerner i V. I. Fal’ko. "Mesoscopic conductance fluctuations in graphene". Solid State Communications 149, nr 27-28 (lipiec 2009): 1041–45. http://dx.doi.org/10.1016/j.ssc.2009.02.058.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Sánchez, David, i Michael Moskalets. "Quantum Transport in Mesoscopic Systems". Entropy 22, nr 9 (1.09.2020): 977. http://dx.doi.org/10.3390/e22090977.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Altshuler, B. L. "Transport Phenomena in Mesoscopic Systems". Japanese Journal of Applied Physics 26, S3-3 (1.01.1987): 1938. http://dx.doi.org/10.7567/jjaps.26s3.1938.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Ng, T. K. "Nonlinear transport in mesoscopic systems". Physical Review Letters 68, nr 7 (17.02.1992): 1018–21. http://dx.doi.org/10.1103/physrevlett.68.1018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Datta, Supriyo, i Henk van Houten. "Electronic Transport in Mesoscopic Systems". Physics Today 49, nr 5 (maj 1996): 70. http://dx.doi.org/10.1063/1.2807624.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Okiji, Ayao, Hideaki Kasai i Atsunobu Nakamura. "Ballistic Transport in Mesoscopic Systems". Progress of Theoretical Physics Supplement 106 (1991): 209–24. http://dx.doi.org/10.1143/ptps.106.209.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Sarkozy, Stephen J., Kantimay Das Gupta, Francois Sfigakis, Ian Farrer, David Ritchie, Geb Jones, Po-Hsin Liu, Helen Quach i Michael Pepper. "Mesoscopic Transport in Undoped Heterostructures". ECS Transactions 16, nr 7 (18.12.2019): 59–64. http://dx.doi.org/10.1149/1.2983159.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Heinonen, O., i M. D. Johnson. "Mesoscopic transport beyond linear response". Physical Review Letters 71, nr 9 (30.08.1993): 1447–50. http://dx.doi.org/10.1103/physrevlett.71.1447.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Maiti, Santanu K. "Electron transport through mesoscopic ring". Physica E: Low-dimensional Systems and Nanostructures 36, nr 2 (luty 2007): 199–204. http://dx.doi.org/10.1016/j.physe.2006.10.024.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Singh, Navinder. "Quantum transport in mesoscopic systems". Resonance 15, nr 11 (listopad 2010): 988–1002. http://dx.doi.org/10.1007/s12045-010-0115-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Jalabert, Rodolfo. "Mesoscopic transport and quantum chaos". Scholarpedia 11, nr 1 (2016): 30946. http://dx.doi.org/10.4249/scholarpedia.30946.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Das, Mukunda P., i Frederick Green. "Nonequilibrium mesoscopic transport: a genealogy". Journal of Physics: Condensed Matter 24, nr 18 (17.04.2012): 183201. http://dx.doi.org/10.1088/0953-8984/24/18/183201.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Okiji, A., H. Kasai i A. Nakamura. "Ballistic Transport in Mesoscopic Systems". Progress of Theoretical Physics Supplement 106 (16.05.2013): 209–24. http://dx.doi.org/10.1143/ptp.106.209.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Levinson, Y. B., i B. Shapiro. "Mesoscopic transport at finite frequencies". Physical Review B 46, nr 23 (15.12.1992): 15520–22. http://dx.doi.org/10.1103/physrevb.46.15520.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Bruynseraede, Y., L. Gielen, C. Strunk, G. Neuttiens, L. Stockman, C. Van Haesendonck i V. V. Moshchalkov. "Electron transport in mesoscopic structures". Nanostructured Materials 6, nr 1-4 (styczeń 1995): 169–78. http://dx.doi.org/10.1016/0965-9773(95)00040-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Angelescu, D. E., M. C. Cross i M. L. Roukes. "Heat transport in mesoscopic systems". Superlattices and Microstructures 23, nr 3-4 (marzec 1998): 673–89. http://dx.doi.org/10.1006/spmi.1997.0561.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Bohra, G., R. Somphonsane, D. K. Ferry i J. P. Bird. "Robust mesoscopic fluctuations in disordered graphene". Applied Physics Letters 101, nr 9 (27.08.2012): 093110. http://dx.doi.org/10.1063/1.4748167.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Mahelona, Keoni K., Alan B. Kaiser i Viera Skákalová. "Resistance and mesoscopic fluctuations in graphene". physica status solidi (b) 247, nr 11-12 (27.09.2010): 2983–87. http://dx.doi.org/10.1002/pssb.201000307.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Seidel, Yvonne E., Zenonas Jusys, Björn Wickman, Bengt Kasemo i R. Jürgen Behm. "Mesoscopic Transport Effects in Electrocatalytic Reactions". ECS Transactions 25, nr 23 (17.12.2019): 91–102. http://dx.doi.org/10.1149/1.3328514.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Chen, Z., i R. S. Sorbello. "Inelasticity and nonlinearity in mesoscopic transport". Physical Review B 44, nr 23 (15.12.1991): 12857–67. http://dx.doi.org/10.1103/physrevb.44.12857.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Zhou, F., B. Spivak i B. Altshuler. "Mesoscopic Mechanism of Adiabatic Charge Transport". Physical Review Letters 82, nr 3 (18.01.1999): 608–11. http://dx.doi.org/10.1103/physrevlett.82.608.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Johnson, M. D., i O. Heinonen. "Nonlinear steady-state mesoscopic transport: Formalism". Physical Review B 51, nr 20 (15.05.1995): 14421–36. http://dx.doi.org/10.1103/physrevb.51.14421.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Bird, J. P., K. Ishibashi, Y. Aoyagi, T. Sugano, R. Akis, D. K. Ferry, D. P. Pivin i in. "Quantum transport in open mesoscopic cavities". Chaos, Solitons & Fractals 8, nr 7-8 (lipiec 1997): 1299–324. http://dx.doi.org/10.1016/s0960-0779(97)00021-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Goel, N., J. Graham, J. C. Keay, K. Suzuki, S. Miyashita, M. B. Santos i Y. Hirayama. "Ballistic transport in InSb mesoscopic structures". Physica E: Low-dimensional Systems and Nanostructures 26, nr 1-4 (luty 2005): 455–59. http://dx.doi.org/10.1016/j.physe.2004.08.080.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

de Vegvar, P. G. N., T. A. Fulton, W. H. Mallison i R. E. Miller. "Mesoscopic Transport in Tunable Andreev Interferometers". Physical Review Letters 73, nr 10 (5.09.1994): 1416–19. http://dx.doi.org/10.1103/physrevlett.73.1416.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Olivares-Robles, M. A., i L. S. García-Colín. "Mesoscopic derivation of hyperbolic transport equations". Physical Review E 50, nr 4 (1.10.1994): 2451–57. http://dx.doi.org/10.1103/physreve.50.2451.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Zirnbauer, Martin R. "Fourier inversion theorem in mesoscopic transport". Physica A: Statistical Mechanics and its Applications 167, nr 1 (sierpień 1990): 132–39. http://dx.doi.org/10.1016/0378-4371(90)90047-v.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Martin, T. "Wavepackets for mesoscopic transport with interactions". Superlattices and Microstructures 23, nr 3-4 (marzec 1998): 859–69. http://dx.doi.org/10.1006/spmi.1997.0547.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Wendin, Göran, i Vitaly S. Shumeiko. "Josephson transport in complex mesoscopic structures". Superlattices and Microstructures 20, nr 4 (grudzień 1996): 569–73. http://dx.doi.org/10.1006/spmi.1996.0116.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Sachrajda, A. S., Y. Feng, H. A. Carmona, A. K. Geim, P. C. Main, L. Eaves i C. T. Foxon. "Mesoscopic transport properties of composite fermions". Surface Science 361-362 (lipiec 1996): 59–62. http://dx.doi.org/10.1016/0039-6028(96)00352-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Kouwenhoven, L. P., N. C. van der Vaart, Yu V. Nazarov, S. Jauhar, D. Dixon, K. McCormick, J. Orenstein i in. "High-frequency transport through mesoscopic structures". Surface Science 361-362 (lipiec 1996): 591–94. http://dx.doi.org/10.1016/0039-6028(96)00477-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Kolesnikova, Anna L., Mikhail A. Rozhkov, Nikita D. Abramenko i Alexey E. Romanov. "On mesoscopic description of interfaces in graphene". Physics of Complex Systems 1, nr 4 (2020): 129–34. http://dx.doi.org/10.33910/2687-153x-2020-1-4-129-134.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Chuang, Chiashain, Li-Hung Lin, Nobuyuki Aoki, Takahiro Ouchi, Akram M. Mahjoub, Tak-Pong Woo, Reuben K. Puddy, Yuichi Ochiai, C. G. Smith i Chi-Te Liang. "Mesoscopic conductance fluctuations in multi-layer graphene". Applied Physics Letters 103, nr 4 (22.07.2013): 043117. http://dx.doi.org/10.1063/1.4816721.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii