Artykuły w czasopismach na temat „Membranotropes”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Membranotropes.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Membranotropes”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Dyubko, Tetiana, Vasyl Pivovarenko, Valentina Chekanova, Yuliya Pakhomova, Yana Gvozdiuk, Antonina Kompaniets i Anatoliy Tatarets. "Study of Interaction of Glycerol Cryoprotectant and Its Derivatives with Dimethylacetamide in Aqueous Solution Using Fluorescent Probes". Problems of Cryobiology and Cryomedicine 31, nr 2 (25.06.2021): 139–50. http://dx.doi.org/10.15407/cryo31.02.139.

Pełny tekst źródła
Streszczenie:
In this paper we have studied the interaction of the mixtures of glycerol (GL) and its oxyethylated derivatives (OEG) with polymerization degree n = 3, 25 and 30 with dimethylacetamide (DMAc) in aqueous solution using 3-hydroxy-4´-(N, N dimethylaminoflavone) fluorescent probe. The combination of GL and its oxyethylated derivatives with DMAc was found to reduce the membranotropy of certain cryoprotective agents, forming a mixture. The combination of both GL and its low molecular weight derivative (OEGn=3) with DMAc reduced the membranotropy of the latter. At the same time, combining GL derivatives of high molecular weight (OEGn=25 and OEGn=30) with DMAc diminished the membranotropy of OEG. The OEGn=30 at concentrations above 1 wt.% was shown to form the micellar-type structures or micellar associates in aqueous solution. This enabled suggesting the membranotropic ability of high molecular weight OEG associates to be stipulated by possible interaction of their nonpolar segments with nonpolar sites on biomembrane surface. Structural rearrangements of molecular associates in aqueous solutions of low and high molecular weight cryoprotectant mixtures were designated as the experimentally established mechanism of cytotoxicity reduction in combined cryoprotective media.
Style APA, Harvard, Vancouver, ISO itp.
2

Kasian, N. A., V. A. Pashynska, O. V. Vashchenko, A. O. Krasnikova, A. Gömöry, M. V. Kosevich i L. N. Lisetski. "Probing of the combined effect of bisquaternary ammonium antimicrobial agents and acetylsalicylic acid on model phospholipid membranes: differential scanning calorimetry and mass spectrometry studies". Mol. BioSyst. 10, nr 12 (2014): 3155–62. http://dx.doi.org/10.1039/c4mb00420e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Guarnieri, Daniela, Pietro Melone, Mauro Moglianetti, Roberto Marotta, Paolo A. Netti i Pier Paolo Pompa. "Particle size affects the cytosolic delivery of membranotropic peptide-functionalized platinum nanozymes". Nanoscale 9, nr 31 (2017): 11288–96. http://dx.doi.org/10.1039/c7nr02350b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Vislobokov, A. I., Yu D. Ignatov i K. N. Melnikov. "Membranotropic action of pharmacological agents". Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology 3, nr 3 (wrzesień 2009): 340. http://dx.doi.org/10.1134/s1990747809030507.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Falanga, Annarita, Massimiliano Galdiero, Giancarlo Morelli i Stefania Galdiero. "Membranotropic peptides mediating viral entry". Peptide Science 110, nr 5 (13.02.2018): e24040. http://dx.doi.org/10.1002/pep2.24040.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Galdiero, Stefania, Mariateresa Vitiello, Annarita Falanga, Marco Cantisani, Novella Incoronato i Massimiliano Galdiero. "Intracellular Delivery: Exploiting Viral Membranotropic Peptides". Current Drug Metabolism 13, nr 1 (1.01.2012): 93–104. http://dx.doi.org/10.2174/138920012798356961.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Ayvazyan, Naira M. "Membranotropic properties of Viperidae snake venoms". Toxicon 158 (luty 2019): S8. http://dx.doi.org/10.1016/j.toxicon.2018.10.035.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Falanga, Annarita, Massimiliano Galdiero i Stefania Galdiero. "Membranotropic Cell Penetrating Peptides: The Outstanding Journey". International Journal of Molecular Sciences 16, nr 10 (23.10.2015): 25323–37. http://dx.doi.org/10.3390/ijms161025323.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Sukhodub, A. L. "Benzene membranotropic action in rat liver microsomes". Biopolymers and Cell 12, nr 6 (20.11.1996): 116–19. http://dx.doi.org/10.7124/bc.00045e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Babusenko, E. S., G. I. El'-Registan, N. B. Gradova, A. N. Kozlova i G. A. Osipov. "Membranotropic autoregulatory factors in methane oxidising bacteria". Russian Chemical Reviews 60, nr 11 (30.11.1991): 1221–27. http://dx.doi.org/10.1070/rc1991v060n11abeh001140.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Sokolova, S. M., G. N. Buzuk, M. Ya Lovkova i Yu V. Tyutekin. "Membranotropic Compounds and Alkaloid Accumulation in Plants". Doklady Biochemistry and Biophysics 402, nr 1-6 (maj 2005): 220–22. http://dx.doi.org/10.1007/s10628-005-0075-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Villalaín, José, C. Reyes Mateo, Francisco J. Aranda, Stuart Shapiro i Vicente Micol. "Membranotropic Effects of the Antibacterial Agent Triclosan". Archives of Biochemistry and Biophysics 390, nr 1 (czerwiec 2001): 128–36. http://dx.doi.org/10.1006/abbi.2001.2356.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Panda, Gayatree, Sabyasachi Dash i Santosh Kumar Sahu. "Harnessing the Role of Bacterial Plasma Membrane Modifications for the Development of Sustainable Membranotropic Phytotherapeutics". Membranes 12, nr 10 (22.09.2022): 914. http://dx.doi.org/10.3390/membranes12100914.

Pełny tekst źródła
Streszczenie:
Membrane-targeted molecules such as cationic antimicrobial peptides (CAMPs) are amongst the most advanced group of antibiotics used against drug-resistant bacteria due to their conserved and accessible targets. However, multi-drug-resistant bacteria alter their plasma membrane (PM) lipids, such as lipopolysaccharides (LPS) and phospholipids (PLs), to evade membrane-targeted antibiotics. Investigations reveal that in addition to LPS, the varying composition and spatiotemporal organization of PLs in the bacterial PM are currently being explored as novel drug targets. Additionally, PM proteins such as Mla complex, MPRF, Lpts, lipid II flippase, PL synthases, and PL flippases that maintain PM integrity are the most sought-after targets for development of new-generation drugs. However, most of their structural details and mechanism of action remains elusive. Exploration of the role of bacterial membrane lipidome and proteome in addition to their organization is the key to developing novel membrane-targeted antibiotics. In addition, membranotropic phytochemicals and their synthetic derivatives have gained attractiveness as popular herbal alternatives against bacterial multi-drug resistance. This review provides the current understanding on the role of bacterial PM components on multidrug resistance and their targeting with membranotropic phytochemicals.
Style APA, Harvard, Vancouver, ISO itp.
14

Nemésio, Henrique, i José Villalaín. "Membranotropic Regions of the Dengue Virus prM Protein". Biochemistry 53, nr 32 (6.08.2014): 5280–89. http://dx.doi.org/10.1021/bi500724k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Poralo, I. V., G. V. Ostrovskaya i V. K. Rybal'chenko. "Membranotropic properties of cardiotonic drugs, suphan and maglucord". Neurophysiology 32, nr 3 (maj 2000): 230–31. http://dx.doi.org/10.1007/bf02506591.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Dubinin, Mikhail V., Vyacheslav A. Sharapov, Alena A. Semenova, Lyudmila V. Parfenova, Anna I. Ilzorkina, Ekaterina I. Khoroshavina, Natalia V. Belosludtseva, Sergey V. Gudkov i Konstantin N. Belosludtsev. "Effect of Modified Levopimaric Acid Diene Adducts on Mitochondrial and Liposome Membranes". Membranes 12, nr 9 (8.09.2022): 866. http://dx.doi.org/10.3390/membranes12090866.

Pełny tekst źródła
Streszczenie:
This paper demonstrates the membranotropic effect of modified levopimaric acid diene adducts on liver mitochondria and lecithin liposomes. We found that the derivatives dose-dependently reduced the efficiency of oxidative phosphorylation of mitochondria due to inhibition of the activity of complexes III and IV of the respiratory chain and protonophore action. This was accompanied by a decrease in the membrane potential in the case of organelle energization both by glutamate/malate (complex I substrates) and succinate (complex II substrate). Compounds 1 and 2 reduced the generation of H2O2 by mitochondria, while compound 3 exhibited a pronounced antioxidant effect on glutamate/malate-driven respiration and, on the other hand, caused ROS overproduction when organelles are energized with succinate. All tested compounds exhibited surface-active properties, reducing the fluidity of mitochondrial membranes and contributing to nonspecific permeabilization of the lipid bilayer of mitochondrial membranes and swelling of the organelles. Modified levopimaric acid diene adducts also induced nonspecific permeabilization of unilamellar lecithin liposomes, which confirmed their membranotropic properties. We discuss the mechanisms of action of the tested compounds on the mitochondrial OXPHOS system and the state of the lipid bilayer of membranes, as well as the prospects for the use of new modified levopimaric acid diene adducts in medicine.
Style APA, Harvard, Vancouver, ISO itp.
17

Potemkin, V. A., M. A. Grishina, O. V. Fedorova, G. L. Rusinov, I. G. Ovchinnikova i R. I. Ishmetova. "Theoretical Investigation of the Antituberculous Activity of Membranotropic Podands". Pharmaceutical Chemistry Journal 37, nr 9 (wrzesień 2003): 468–72. http://dx.doi.org/10.1023/b:phac.0000008246.07413.d9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

BEAUGÉ, FRANÇOISE. "Membranotropic Effects of Ethanol Related to Tolerance and Dependence". Annals of the New York Academy of Sciences 625, nr 1 Molecular and (czerwiec 1991): 548–50. http://dx.doi.org/10.1111/j.1749-6632.1991.tb33887.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Trikash, I. O., Ya T. Terletskaya, L. I. Kolchinskaya i M. K. Malysheva. "Membranotropic properties of latrotoxin-like protein: Studies on liposomes". Neurophysiology 30, nr 2 (marzec 1998): 72–75. http://dx.doi.org/10.1007/bf02463054.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Nemésio, Henrique, Francis Palomares-Jerez i José Villalaín. "NS4A and NS4B proteins from dengue virus: Membranotropic regions". Biochimica et Biophysica Acta (BBA) - Biomembranes 1818, nr 11 (listopad 2012): 2818–30. http://dx.doi.org/10.1016/j.bbamem.2012.06.022.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Yurin, V. M., G. D. Matusov, Ya F. Freimanis, V. V. Kudryashova i K. I. Dikovskaya. "Surface activity and membranotropic action of 11-deoxyprostaglandins E1". Pharmaceutical Chemistry Journal 20, nr 9 (wrzesień 1986): 604–8. http://dx.doi.org/10.1007/bf01148630.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Markova, M. V., I. V. Tatarinova, O. A. Tarasova, K. A. Apatrsin, V. V. Kireeva i B. A. Trofimov. "Cationic copolymerisation of cholesterol vinyl ether with N-allenylpyrrolidone; a route to pharmacologically promising oligomers". Доклады Академии наук 485, nr 6 (24.05.2019): 697–700. http://dx.doi.org/10.31857/s0869-56524856697-700.

Pełny tekst źródła
Streszczenie:
Cationic copolymerization of cholesterol vinyl ether with N-allenylpyrrolidone yielded co-oligomers with molecular mass of 1200-2100. The polymerization of N-allenylpyrrolidone involves both 1,2- and 2,3-positions of the allenyl substituent to give four types of units as a result of prototropic isomerization of the initially formed structures. In the developed method, the composition of co-oligomers can be controlled and, hence, their hydrophilic/hydrophobic balance, solubility, and membranotropic properties can also be controlled to change the potential biological activity of the products.
Style APA, Harvard, Vancouver, ISO itp.
23

Safronova, Victoria N., Pavel V. Panteleev, Stanislav V. Sukhanov, Ilia Y. Toropygin, Ilia A. Bolosov i Tatiana V. Ovchinnikova. "Mechanism of Action and Therapeutic Potential of the β-Hairpin Antimicrobial Peptide Capitellacin from the Marine Polychaeta Capitella teleta". Marine Drugs 20, nr 3 (25.02.2022): 167. http://dx.doi.org/10.3390/md20030167.

Pełny tekst źródła
Streszczenie:
Among the most potent and proteolytically resistant antimicrobial peptides (AMPs) of animal origin are molecules forming a β-hairpin structure stabilized by disulfide bonds. In this study, we investigated the mechanism of action and therapeutic potential of the β-hairpin AMP from the marine polychaeta Capitella teleta, named capitellacin. The peptide exhibits a low cytotoxicity toward mammalian cells and a pronounced activity against a wide range of bacterial pathogens including multi-resistant bacteria, but the mechanism of its antibacterial action is still obscure. In view of this, we obtained analogs of capitellacin and tachyplesin-inspired chimeric variants to identify amino acid residues important for biological activities. A low hydrophobicity of the β-turn region in capitellacin determines its modest membranotropic activity and slow membrane permeabilization. Electrochemical measurements in planar lipid bilayers mimicking the E. coli membrane were consistent with the detergent-like mechanism of action rather than with binding to a specific molecular target in the cell. The peptide did not induce bacterial resistance after a 21-day selection experiment, which also pointed at a membranotropic mechanism of action. We also found that capitellacin can both prevent E. coli biofilm formation and destroy preformed mature biofilms. The marked antibacterial and antibiofilm activity of capitellacin along with its moderate adverse effects on mammalian cells make this peptide a promising scaffold for the development of drugs for the treatment of chronic E. coli infections, in particular those caused by the formation of biofilms.
Style APA, Harvard, Vancouver, ISO itp.
24

Mirgorodskaya, Alla B., Farida G. Valeeva, Dinar R. Gabdrakhmanov, Liliya V. Mustakimova, Lucia Ya Zakharova, Oleg G. Sinyashin i Vakhid A. Mamedov. "Novel quinoxaline derivative: Solubilization by surfactant solutions and membranotropic properties". Tetrahedron 73, nr 34 (sierpień 2017): 5115–21. http://dx.doi.org/10.1016/j.tet.2017.07.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Eremeev, S. A., K. A. Motovilov, E. M. Volkov i L. S. Yaguzhinsky. "SkQ3: The new member of the class of membranotropic uncouplers". Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology 5, nr 4 (grudzień 2011): 310–15. http://dx.doi.org/10.1134/s1990747811050047.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Faingol’d, I. I., D. A. Poletaeva, R. A. Kotelnikova, A. B. Kornev, P. A. Troshin, I. E. Kareev, V. P. Bubnov, V. S. Romanova i A. I. Kotelnikov. "Membranotropic and relaxation properties of water-soluble gadolinium endometallofullerene derivatives". Russian Chemical Bulletin 63, nr 5 (maj 2014): 1107–12. http://dx.doi.org/10.1007/s11172-014-0556-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Pavlova, M., A. Serbin, N. Fedorova, E. Karaseva, E. Klimova i A. Kushch. "Anti-cytomegalovirus Activity of Membranotropic Polyacidic Agents Effects In Vitro". Antiviral Research 82, nr 2 (maj 2009): A50—A51. http://dx.doi.org/10.1016/j.antiviral.2009.02.115.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Azouzi, Slim, Karim El Kirat i Sandrine Morandat. "Hematin loses its membranotropic activity upon oligomerization into malaria pigment". Biochimica et Biophysica Acta (BBA) - Biomembranes 1848, nr 11 (listopad 2015): 2952–59. http://dx.doi.org/10.1016/j.bbamem.2015.08.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Kalinovych, Viacheslav, i Volodymyr Berest. "Similarity of Gramicidin S and Cryoprotectant Polyethylene Glycol Membranotropic Effects". Problems of Cryobiology and Cryomedicine 29, nr 2 (25.06.2019): 161. http://dx.doi.org/10.15407/cryo29.02.161.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Spasov, A. A., V. V. Nedogoda, O. V. Ostrovskii i Kuame Konan. "Membranotropic effect of low-intensity laser radiation of the blood". Bulletin of Experimental Biology and Medicine 126, nr 4 (październik 1998): 1010–13. http://dx.doi.org/10.1007/bf02447306.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Vashchenko, O. V. "Model lipid bilayers as sensor bionanomaterials for characterization of membranotropic action of water-soluble substances". Functional materials 25, nr 3 (27.09.2018): 422–31. http://dx.doi.org/10.15407/fm25.03.422.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Roman’ko, M. Y. "Biochemical markers of safety of nano-particles of metals on the model of isolated subcultural fractions of eukaryotes". Regulatory Mechanisms in Biosystems 8, nr 4 (9.11.2017): 564–68. http://dx.doi.org/10.15421/021787.

Pełny tekst źródła
Streszczenie:
Unique sizes and a high level of bioavailability allow nanoparticles of metals (NPMe) to come into direct contact with biological systems, with infectious agents, toxins, as well as with different chemical compounds and separate cell structures (proteins, lipids, nucleic acids). Other biological effects, including less toxicity than in microscopic substances, require attention to be paid to the study of the potential risk of using nanoparticles of each type in a particular way, therefore scientific support is absolutely necessary in this direction. It is believed that the cytotoxicity of nanomaterials is due to genomic and mutagenic effects, but the mechanical forces of interaction of NPMе with cells, obviously, will change not only cytological but also their metabolic reactions. Therefore, the purpose of this research was to determine the biochemical markers of safety (potential toxicity) of NPMe (Au, Ag, Cu, Fe, Co, GFCo, Zn, MnO2) on the model of isolated membrane and cytosolic fractions of eukaryotic test cells of CHO-K1 and U937 lines. Under conditions of preincubation of experimental samples of NPMe at a final concentration of 1 μg/cm3 by the metal with preparations of subcellular fractions of CHO-K1 and U937 (in the final amount of protein 150–200 μg/cm3) for 3 minutes at 37 ± 1 ºС, there was determined the magnitude of membrane ATP-ase and cytosolic LDH-ase activity compared to intact cells ("control"). According to the results of the research, colloidal dispersions of NPAg average size ~30 nm, NPFe ~100 nm, NPCu ~70 nm, and NPMnO2 ~50 nm are safe and biocompatible by their membranotropic effect on subcellular fractions of eukaryotic test cells, as evidenced by an increase in the level of membrane ATPase and cytosolic LDHase of test-cells CHO-K1, and the experimental samples NPCo, NPGFCo and NPZn average size of ~100 nm are membrane-toxic, that is, dangerous. By the nature of the changes in the enzymatic activity of the test cells U937, the discrete dimensions of the membranotropic action of NPAu have been demonstrated: nanoparticles of size ~10 nm caused the inhibition of the membrane Na+,K+-ATPase, and the size of ~30 nm and ~45 nm – its induction; nanoparticles of size ~10, ~20 and ~30 nm induced cytosolic LDHase and the size of ~45 nm – its inhibition relative to the control level of enzymes, so NPAu ~10 and ~45 nm can be considered membrane toxic, and size ~30 nm – safe and biocompatible for eukaryotic cells. Based on the hypothesis about the involvement of metabolism-dependent mechanisms of contact interaction of colloidal dispersions of experimental samples of NPMe with cells through membranotropic properties, the study of their potential danger or biocompatibility in further research can be carried out by determining the intensity of oxidation of the main structural components of biomembranes of cells – lipids and proteins and indicators of their AO-regulation.
Style APA, Harvard, Vancouver, ISO itp.
33

Makhmutov, B. B., B. S. Abdrasilov i Yu A. Kim. "ANTIRADICAL AND MEMBRANOTROPIC ACTIONS OF QUERCETIN AND ITS COMPLEX WITH ALUMINUM". International Journal of Applied and Fundamental Research (Международный журнал прикладных и фундаментальных исследований), nr 7 2022 (2022): 83–88. http://dx.doi.org/10.17513/mjpfi.13417.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Ivanova, Tetiana. "EFFECTS OF MEMBRANOTROPIC MICROFERTILIZERS TO GROW THE MYCELIUM OF LENTINULA EDODES". Journal of Microbiology, Biotechnology and Food Sciences 9, nr 3 (2019): 605–9. http://dx.doi.org/10.15414/jmbfs.2019/20.9.3.605-609.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Kuyukina, M. S., O. A. Kochina, S. V. Gein, I. B. Ivshina i V. A. Chereshnev. "Mechanisms of Immunomodulatory and Membranotropic Activity of Trehalolipid Biosurfactants (a Review)". Applied Biochemistry and Microbiology 56, nr 3 (maj 2020): 245–55. http://dx.doi.org/10.1134/s0003683820030072.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

de Alteriis, E., L. Lombardi, A. Falanga, M. Napolano, S. Galdiero, A. Siciliano, R. Carotenuto, M. Guida i E. Galdiero. "Polymicrobial antibiofilm activity of the membranotropic peptide gH625 and its analogue". Microbial Pathogenesis 125 (grudzień 2018): 189–95. http://dx.doi.org/10.1016/j.micpath.2018.09.027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Walrant, Astrid, Sébastien Cardon, Fabienne Burlina i Sandrine Sagan. "Membrane Crossing and Membranotropic Activity of Cell-Penetrating Peptides: Dangerous Liaisons?" Accounts of Chemical Research 50, nr 12 (27.11.2017): 2968–75. http://dx.doi.org/10.1021/acs.accounts.7b00455.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Lisetski, L., O. Vashchenko, A. Tolmachev i K. Vodolazhskiy. "Effects of membranotropic agents on mono- and multilayer structures of dipalmitoylphosphatidylcholine". European Biophysics Journal 31, nr 7 (1.12.2002): 554–58. http://dx.doi.org/10.1007/s00249-002-0244-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Faingol’d, I. I., A. D. Lozhkin, A. V. Smolina, Yu V. Soldatova, N. А. Obraztsova, S. V. Kurmaz, V. S. Romanova, V. N. Shtol’ko i R. A. Kotel’nikova. "Membranotropic properties of fullerene-containing amphiphilic (co)polymers of N-vinylpyrrolidone". Russian Chemical Bulletin 67, nr 5 (maj 2018): 800–805. http://dx.doi.org/10.1007/s11172-018-2140-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Galdiero, Stefania, Annarita Falanga, Giancarlo Morelli i Massimiliano Galdiero. "gH625: A milestone in understanding the many roles of membranotropic peptides". Biochimica et Biophysica Acta (BBA) - Biomembranes 1848, nr 1 (styczeń 2015): 16–25. http://dx.doi.org/10.1016/j.bbamem.2014.10.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Andreev, Sergei, Igor Andreev, Elena Nikolaeva, Anna Petrukhina, Vladimir Zemskov i Mariam Vafina. "Membranotropic effects of peptides from the V3 loop of HIV-1". Letters in Peptide Science 5, nr 2-3 (maj 1998): 63–66. http://dx.doi.org/10.1007/bf02443439.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Parshina, E. Yu, L. Ya Gendel’ i A. B. Rubin. "Influence of hydrophobic properties of IKhFAN antioxidants on their membranotropic activity". Pharmaceutical Chemistry Journal 46, nr 2 (maj 2012): 82–85. http://dx.doi.org/10.1007/s11094-012-0738-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Semina, I. G., I. I. Semina, D. A. Faizyllin, N. A. Baichurina, E. A. Stupishina, N. N. Vylegzhanina, R. I. Tarasova, V. D. Fedotov, R. S. Garaev i V. A. Pavlov. "Membranotropic effect of 2(chloroethoxy)-para-N-dimethylaminophenyl phosphinylacetyl hydrazide (CAPAH)". Bulletin of Experimental Biology and Medicine 126, nr 2 (sierpień 1998): 797–99. http://dx.doi.org/10.1007/bf02446913.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Purygin, P. P., A. A. Danilin, N. A. Klenova, N. V. Makarova i I. K. Moiseev. "Synthesis and membranotropic activity of N-adamantanoylamino and N-adamantylacetylamino acids". Pharmaceutical Chemistry Journal 33, nr 3 (marzec 1999): 132–33. http://dx.doi.org/10.1007/bf02508448.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Logashenko, E. B., I. L. Kuznetsova, E. I. Ryabchikova, V. V. Vlassov i M. A. Zenkova. "Mechanism of the toxicity of the artificial ribonucleases for the different human cancer cell lines". Biomeditsinskaya Khimiya 56, nr 2 (2010): 230–43. http://dx.doi.org/10.18097/pbmc20105602230.

Pełny tekst źródła
Streszczenie:
The ability of artificial ribonucleases to cause in the concentration-dependent manner death of cancer cells has been studied. The cytotoxic activity of artificial ribonucleases is observed at rather low concentration of these compounds (10-5 М). Analysis of the mechanism of artificial ribonucleases citotoxicity revealed that compounds under the study exhibit membranotropic activity in addition to ribonucleases activity found earlier. This activity is responsible for effective penetration of these compounds inside cells. The results obtained show that artificial ribonucleases induce cell death via damage of cells membrane, detachment of plasmalemma and derangement its macromolecular organization. In the case of short-term exposure of cells to the compounds, cells, even with damaged membrane, survive.
Style APA, Harvard, Vancouver, ISO itp.
46

Akhmedov, Alan A., Dmitriy N. Shurpik, Zainab R. Latypova, Rustem R. Gamirov i Ivan I. Stoykov. "Synthetic meroterpenoids based on terpene alcohols: synthesis, self-assembly, and membranotropic properties". Butlerov Communications 63, nr 7 (31.07.2020): 11–18. http://dx.doi.org/10.37952/roi-jbc-01/20-63-7-11.

Pełny tekst źródła
Streszczenie:
Currently, targeted drug delivery is of great interest in the field of medicine. The study of compounds capable of permeating cell membranes is a major problem in this area. The synthesis of pharmacologically active compounds includes the formation of structures with various combinations of pharmacophore fragments and properties. Amphiphilic compounds tend to exhibit membranotropic activity. From this point of view, the modification of natural products, especially terpenoids, is of particular interest. Terpenoid structures are used as membrane anchors in the development of modulators for membrane-integrated proteins or structures for creating nanocontainers. In this paper we synthesized a number of water-soluble amphiphilic meroterpenoids containing a charged pyridinium fragment on the basis of acyclic terpene alcohols. Residue of terpene alcohols – geraniol (monoterpenol), farnesol (sesquiterpenol), and phytol (diterpenol) – were used as the hydrophobic part of the amphiphilic structure. Linear acyclic alcohols are commercially available reagents and have a structure similar to that of polyprenols in archaeal lipids, which made it possible to obtain synthetic lipid-like meroterpenoids capable of self-assembly in aqueous solutions. The charged pyridinium fragment, which is included in numerous natural compounds, was of interest as a polar component. This meroterpenoids are synthetic analogs of archaeal lipids. It was shown that the studied meroterpenoids form nanosized aggregates in aqueous solutions by the method of dynamic light scattering and the Doppler microelectrophoresis method. Turbidimetric titration on model dipalmitoylphosphatidylcholine vesicles revealed that the synthesized compounds are embedded into the bilayer membrane without destroying it. Self-assembled aggregates of synthesized compounds in water can find application for drug delivery – in the creation of nanocontainers containing membrane anchors capable of interacting with the outer surface of the cell (lipid membrane).
Style APA, Harvard, Vancouver, ISO itp.
47

Kushnazarova, R. A., A. B. Mirgorodskaya, A. D. Voloshina, A. P. Lyubina, D. M. Kuznetsov, O. A. Lenina i L. Ya Zakharova. "Dicarbamate Surfactant – Tween 80 Binary Systems: Aggregation, Antimicrobial Activity and Membranotropic Properties". Liquid Crystals and their Application 22, nr 2 (30.06.2022): 6–18. http://dx.doi.org/10.18083/lcappl.2022.2.6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Kondakova, H. K., H. O. Semko, O. V. Levytska i V. M. Tsymbal. "State of antioxidant system in urogenital trichomoniasis and membranotropic effect of metronidazole". Dermatology and Venerology, nr 2 (4.06.2021): 8–11. http://dx.doi.org/10.33743/2308-1066-2021-2-8-11.

Pełny tekst źródła
Streszczenie:
The objective of this work was to study the activity of glutathione peroxidase, glutathione reductase and the level of sulfhydryl groups in erythrocytes of patients with urogenital trichomoniasis and the effect of metronidazole on the degree of osmotic and peroxide resistance of erythrocytes from healthy donors. We examined 15 patients with urogenital trichomoniasis and 20 healthy volunteers. We studied native preparations, and also carried out a culture method using the Johnson-Trussel nutrient medium (CPLM) to identify Trichomona vaginalis. The activity of glutathione reductase, glutathione peroxidase and the level of total sulfhydryl groups were determined in erythrocytes of peripheral blood. The membrane effect of metronidazole was evaluated in in vitro experiment by the degree of osmotic and peroxide resistance of erythrocytes from healthy people. It has been established that a significant decrease in glutathione reductase and glutathione peroxidase activities in erythrocytes is observed, which indicates a violation of the antioxidant system in this pathology. It was shown in vitro experiment, that metronidazole in low concentration (80 μmol /l) has the ability to inhibit erythrocyte hypotonic hemolysis, and high concentration (250 μmol/l) leads to a decrease in osmotic and peroxide resistance of erythrocytes. Thus, inhibition of the activity of the enzymatic link of the antioxidant defense is observed in urogenital trichomoniasis, which is one of the mechanisms for the development of pathology at the cellular level in this disease. It has been shown that the isolated membranotropic action of metronidazole depends on its concentration – the drug at low concentration is able to inhibit hypotonic hemolysis of erythrocytes, and high concentration makes them more sensitive to the osmotic and peroxide hemolysis. The obtained results should be taken into account in the development of complex methods of therapy for urogenital trichomoniasis.
Style APA, Harvard, Vancouver, ISO itp.
49

Bogdanov, G. N., R. A. Kotel'nikova, E. S. Frog, V. N. Shtol'ko, V. S. Romanova i Yu N. Bubnov. "Enantiomers of the Amino Acid Derivatives of Fullerene C60Possess Stereospecific Membranotropic Properties". Doklady Biochemistry and Biophysics 396, nr 1-6 (maj 2004): 165–67. http://dx.doi.org/10.1023/b:dobi.0000033519.39539.89.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Gerasimenko, E. N., V. N. Meshchaninov, E. M. Zvezdina, U. E. Katireva, E. L. Tkachenko i I. V. Gavrilov. "Comparative analysis of geroprophylactic efficiency and membranotropic action of various gas therapies". Advances in Gerontology 5, nr 1 (styczeń 2015): 12–17. http://dx.doi.org/10.1134/s207905701501004x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii