Spis treści
Gotowa bibliografia na temat „Membrane-Bound TGF-Β”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Membrane-Bound TGF-Β”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Membrane-Bound TGF-Β"
Elderbroom, Jennifer L., Jennifer J. Huang, Catherine E. Gatza, Jian Chen, Tam How, Mark Starr, Andrew B. Nixon i Gerard C. Blobe. "Ectodomain shedding of TβRIII is required for TβRIII-mediated suppression of TGF-β signaling and breast cancer migration and invasion". Molecular Biology of the Cell 25, nr 16 (15.08.2014): 2320–32. http://dx.doi.org/10.1091/mbc.e13-09-0524.
Pełny tekst źródłaKim, Pyeung-Hyeun, Young-Saeng Jang, Ha-Eon Song, Goo-Young Seo, Seung-Goo Kang, Jeong Hyun Lee, Bo-Eun Kwon i Hyun-Jeong Ko. "Mechanism underlying the induction of Foxp3+ regulatory T cells by lactoferrin". Journal of Immunology 200, nr 1_Supplement (1.05.2018): 47.16. http://dx.doi.org/10.4049/jimmunol.200.supp.47.16.
Pełny tekst źródłaYan, Xiaohua, i Ye-Guang Chen. "Smad7: not only a regulator, but also a cross-talk mediator of TGF-β signalling". Biochemical Journal 434, nr 1 (27.01.2011): 1–10. http://dx.doi.org/10.1042/bj20101827.
Pełny tekst źródłaKim, Sun Kyung, Morkos A. Henen i Andrew P. Hinck. "Structural biology of betaglycan and endoglin, membrane-bound co-receptors of the TGF-beta family". Experimental Biology and Medicine 244, nr 17 (10.10.2019): 1547–58. http://dx.doi.org/10.1177/1535370219881160.
Pełny tekst źródłaSisto, Margherita, Domenico Ribatti i Sabrina Lisi. "SMADS-Mediate Molecular Mechanisms in Sjögren’s Syndrome". International Journal of Molecular Sciences 22, nr 6 (21.03.2021): 3203. http://dx.doi.org/10.3390/ijms22063203.
Pełny tekst źródłaWeber, Florian, Oliver Treeck, Patricia Mester i Christa Buechler. "Expression and Function of BMP and Activin Membrane-Bound Inhibitor (BAMBI) in Chronic Liver Diseases and Hepatocellular Carcinoma". International Journal of Molecular Sciences 24, nr 4 (9.02.2023): 3473. http://dx.doi.org/10.3390/ijms24043473.
Pełny tekst źródłaGallardo-Vara, Ruiz-Llorente, Casado-Vela, Ruiz-Rodríguez, López-Andrés, Pattnaik, Quintanilla i Bernabeu. "Endoglin Protein Interactome Profiling Identifies TRIM21 and Galectin-3 as New Binding Partners". Cells 8, nr 9 (13.09.2019): 1082. http://dx.doi.org/10.3390/cells8091082.
Pełny tekst źródłaDhandapani, Krishnan M., F. Marlene Wade, Virendra B. Mahesh i Darrell W. Brann. "Astrocyte-Derived Transforming Growth Factor-β Mediates the Neuroprotective Effects of 17β-Estradiol: Involvement of Nonclassical Genomic Signaling Pathways". Endocrinology 146, nr 6 (1.06.2005): 2749–59. http://dx.doi.org/10.1210/en.2005-0014.
Pełny tekst źródłaJang, Young-Saeng, Ha-Eon Song, Goo-Young Seo, Hyeon-Ju Jo, Sunhee Park, Hui-Won Park, Tae-Gyu Kim i in. "Lactoferrin Potentiates Inducible Regulatory T Cell Differentiation through TGF-β Receptor III Binding and Activation of Membrane-Bound TGF-β". Journal of Immunology 207, nr 10 (6.10.2021): 2456–64. http://dx.doi.org/10.4049/jimmunol.2100326.
Pełny tekst źródłaZhu, Qingwei, Yong Hwan Kim, Douglas Wang, S. Paul Oh i Kunxin Luo. "SnoN facilitates ALK1–Smad1/5 signaling during embryonic angiogenesis". Journal of Cell Biology 202, nr 6 (9.09.2013): 937–50. http://dx.doi.org/10.1083/jcb.201208113.
Pełny tekst źródłaRozprawy doktorskie na temat "Membrane-Bound TGF-Β"
Wnent, Dorothee Anna [Verfasser], Daniel [Akademischer Betreuer] Drömann i Guido [Akademischer Betreuer] Stichtenoth. "Pulmonales Geweberemodeling und Reparaturmechanismen im TGF-β Pseudorezeptor BMP and activin membrane bound inhibitor Knockout Modell nach ex vivo Infektion mit Nontypeable Haemophilus influenzae / Dorothee Anna Wnent ; Akademische Betreuer: Daniel Drömann, Guido Stichtenoth". Lübeck : Zentrale Hochschulbibliothek Lübeck, 2021. http://d-nb.info/1232284416/34.
Pełny tekst źródłaBoyer, Thomas. "Impact des cellules myéloïdes immunosuppressives dans l’induction de cellules souches cancéreuses". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0221.
Pełny tekst źródłaThe tumor microenvironment is strongly influenced by myeloid cells, with macrophages, neutrophils, and monocytes being major representatives. Research over the past decades has shown that almost all tumors are infiltrated in myeloid cells, making it impossible for “cold” tumors to exist with respect to these cells. Moreover, results from numerous clinical studies focusing on the myeloid immune compartment clearly show that these cells are almost universally associated with poor clinical outcome in patients, motivating a better understanding of their biology and efforts to target them. However, a central question has long been to understand what determines the functions of these cells in cancer.During emergency myelopoiesis, pathological activation of myeloid progenitors gives rise to myeloid-derived suppressor cells (MDSC), a term that encompasses a group of immature cells with a common property: immunosuppression. Indeed, MDSC play a crucial role in regulating antitumor immune responses but also promote tumor progression through non-immunological mechanisms, such as influencing angiogenesis and the extracellular matrix, resistance to therapies, and the preparation of the pre-metastatic niche.The preparation of the pre-metastatic niche is essential for the emergence of metastases at distant sites from the primary tumor, the leading cause of cancer-related deaths. These metastases are initiated by a subpopulation of tumor cells with stem-like properties: cancer stem cells (CSC). These cells, also known as Tumor-Initiating cells (TIC), encompass a minor subpopulation within the tumor and are characterized by intrinsic properties such as self-renewal potential, asymmetric division, and the ability to induce a new, heterogeneous tumor. Highly plastic, CSC transition from one cellules state to another through the epithelial-to-mesenchymal transition (EMT) or its counterpart, the mesenchymal-to-epithelial transition (MET). Therefore, a better understanding and specific treatment strategies targeting CSC could transform clinical management and significantly improve patient survival rates.The complexity of the tumor microenvironment, reflected by the presence of numerous actors and their interactions, exerts strong selective pressure on cancer cells and provides a favorable environment for the growth of CSC. Furthermore, the clinical implications associated with the issues of MDSC and CSC drive the emergence of studies on their reciprocal interactions, but the limitations in detecting these two actors make the evaluation and understanding of their interaction mechanisms diffuse and incomplete.In this thesis, we studied the role of suppressive myeloid cells in the induction of cancer cells with stemness properties. We have shown Human Monocyte Derived Suppressive Cells (HuMoSC) generated in vitro, but also their murine and patient derived equivalent promoted the apparition of CSC. Our results have highlighted a stemness induction mediated through a direct cell-to-cell contact and involving membrane-bound TGF-β. Finally, transcriptomic study of myeloid and cancer cells allowed us to identify a subpopulation of myeloid cells, expressing the glycoprotein CD52, as responsible for the immunosuppressive properties and the plasticity of CSC towards a mesenchymal-like phenotype