Gotowa bibliografia na temat „Melt ponds – Ecology – Antarctica”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Melt ponds – Ecology – Antarctica”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Melt ponds – Ecology – Antarctica"

1

Lyons, W. Berry, Kathleen A. Welch, Christopher B. Gardner, Chris Jaros, Daryl L. Moorhead, Jennifer L. Knoepfle i Peter T. Doran. "The geochemistry of upland ponds, Taylor Valley, Antarctica". Antarctic Science 24, nr 1 (23.09.2011): 3–14. http://dx.doi.org/10.1017/s0954102011000617.

Pełny tekst źródła
Streszczenie:
AbstractThe McMurdo Dry Valleys of Antarctica are the largest ice-free region on the continent. These valleys contain numerous water bodies that receive seasonal melt from glaciers. For forty years, research emphasis has been placed on the larger water bodies, the permanent ice-covered lakes. We present results from the first study describing the geochemistry of ponds in the higher elevations of Taylor Valley. Unlike the lakes at lower elevations, the landscape on which these ponds lie is among the oldest in Taylor Valley. These upland ponds wax and wane in size depending on the local climatic conditions, and their ionic concentrations and isotopic composition vary annually depending on the amount of meltwater generated and their hydrologic connectivity. This study evaluates the impact of changes in summer climate on the chemistry of these ponds. Although pond chemistry reflects the initial meltwater chemistry, dissolution and chemical weathering within the stream channels, and possibly permafrost fluid input, the primary control is the dilution effect of glacier melt during warmer summers. These processes lead to differences in solute concentrations and ionic ratios between ponds, despite their nearby proximity. The change in size of these ponds over time has important consequences on their geochemical behaviour and potential to provide water and solutes to the subsurface.
Style APA, Harvard, Vancouver, ISO itp.
2

Griffin, Benjamin M., i James M. Tiedje. "Microbial reductive dehalogenation in Antarctic melt pond sediments". Antarctic Science 19, nr 4 (2.08.2007): 411–16. http://dx.doi.org/10.1017/s0954102007000570.

Pełny tekst źródła
Streszczenie:
AbstractDue to its geographic isolation and relatively limited human impact, Antarctica is a promising location to study the eco-physiology of natural halogen cycles. Anaerobic sediments from Antarctic melt ponds on Ross Island and on the McMurdo Ice Shelf near Bratina Island were tested for activity of microbial reductive dehalogenation. Anaerobic enrichment cultures were established with potential electron donors and tetrachloroethene, trichloroethene, 2-bromophenol, 2-chlorophenol, 3-bromobenzoate, or 3-chlorobenozoate, as model halocarbon electron acceptors. Dechlorination of aromatic compounds was limited, whereas 2-bromophenol was debrominated in seven of the eight sediments and one site also showed debromination of 3-bromobenzoate. A most probable number estimate with 2-bromophenol at one site revealed 103–104cultivatable debrominators per gram of sediment (wet weight). Chloroethene dechlorination was slow and primarily produced trichloroethene from tetrachloroethene, although bothcis-andtrans-dichloroethene were detected in certain enrichments upon extended incubation. These results demonstrate the presence of reductive dehalogenating activity in anaerobic, Antarctic melt-pond sediments and expand the known metabolic diversity of Antarctic microorganisms.
Style APA, Harvard, Vancouver, ISO itp.
3

Howard-Williams, Clive, i Ian Hawes. "Ecological processes in Antarctic inland waters: interactions between physical processes and the nitrogen cycle". Antarctic Science 19, nr 2 (22.05.2007): 205–17. http://dx.doi.org/10.1017/s0954102007000284.

Pełny tekst źródła
Streszczenie:
AbstractIn this review we consider the physical processes that shape inland aquatic ecosystems and how these affect ecosystem processes, with particular focus on the nitrogen cycle. Inland Antarctica is dominated by microbial communities that are usually concentrated in, or adjacent to, habitats with free water. The presence of free vs frozen water is dependent on very small changes in temperature around 0°C, so significant variability in the distribution of free water can be expected in response to variations in climate over diel, decadal, to millennial time scales and a range of spatial scales. Antarctic inland waters take many forms: snow-surface melt pockets, cryoconites, basal regions of wet-based glaciers, ponds (varying in salinity and degree of desiccation), melt streams, perennially and seasonally ice covered lakes and even hypersaline, ice free lakes. The important processes and transformations that characterize the nitrogen cycle worldwide have all been identified in Antarctic inland waters and in some cases (e.g. N-uptake, N-fixation), rates are similar to those at lower latitudes. The unique features of Antarctic ecosystems stem from the extreme and variable physical conditions under which these processes operate rather than any unique ecosystem processes per se.
Style APA, Harvard, Vancouver, ISO itp.
4

Howard-Williams, Clive. "Climate change as a unifying theme in Antarctic research". Antarctic Science 13, nr 4 (grudzień 2001): 353. http://dx.doi.org/10.1017/s0954102001000499.

Pełny tekst źródła
Streszczenie:
How many times have you seen statements similar to the following: “Antarctica is a global barometer”, “Antarctica is a warning beacon for global change”, or “Antarctica is a warning beacon for global change”, or “Antarctica is the most sensitive continent to climate change”? The frequency of such statements in this, and other polar journals, is significant. We know that the polar regions are highly sensitive to natural and human induced changes that originate elsewhere on our planet, and the literature is extensive and growing. At the large scale there is increasing evidence of both direct and indirect linkages between climate patterns (e.g. ENSO) in the Pacific and Atlantic oceans and Antarctic climate. At a smaller scale are the follow-on linkages to glacier dynamics, including surface melt, glacier stream flows, lake levels, beaches, sea-ice dynamics and ice tongues. All of these have major repercussions on Antarctic ecosystems. The phase change from water (liquid) to ice (solid) occurs over avery small temperature range (depending on salinity, pressure etc). Thus, for a pond ecosystem, a change in temperature of less than one degree Celsius means the difference between a functioning aquatic ecosystem, and a frozen ecosystem. The recent IPCC report (Climate Change 2001 [3 vols], Cambridge University Press) leaves little doubt of the significant changes to world climate now taking place. As Antarctic scientists we surely must therefore consider that the principal issue to be addressed in Antarctica at present is that of “Responses to a changing climate”.
Style APA, Harvard, Vancouver, ISO itp.
5

Kyrö, E. M., V. M. Kerminen, A. Virkkula, M. Dal Maso, J. Parshintsev, J. Ruíz-Jimenez, L. Forsström i in. "Antarctic new particle formation from continental biogenic precursors". Atmospheric Chemistry and Physics Discussions 12, nr 12 (19.12.2012): 32741–94. http://dx.doi.org/10.5194/acpd-12-32741-2012.

Pełny tekst źródła
Streszczenie:
Abstract. Over Antarctica, aerosol particles originate almost entirely from marine areas, with minor contribution from long-range transported dust or anthropogenic material. The Antarctic continent itself, unlike all other continental areas, has been thought to be practically free of aerosol sources. Here we present evidence of local aerosol production associated with melt-water ponds in the continental Antarctica. We show that in air masses passing such ponds, new aerosol particles are efficiently formed and these particles grow up to sizes where they may act as cloud condensation nuclei (CCN). The precursor vapours responsible for aerosol formation and growth originate very likely from highly abundant cyanobacteria Nostoc commune (Vaucher) communities of local ponds. This is the first time when freshwater vegetation has been identified as an aerosol precursor source. The influence of the new source on clouds and climate may increase in future Antarctica, and possibly elsewhere undergoing accelerating summer melting of semi-permanent snow cover.
Style APA, Harvard, Vancouver, ISO itp.
6

Kyrö, E. M., V. M. Kerminen, A. Virkkula, M. Dal Maso, J. Parshintsev, J. Ruíz-Jimenez, L. Forsström i in. "Antarctic new particle formation from continental biogenic precursors". Atmospheric Chemistry and Physics 13, nr 7 (2.04.2013): 3527–46. http://dx.doi.org/10.5194/acp-13-3527-2013.

Pełny tekst źródła
Streszczenie:
Abstract. Over Antarctica, aerosol particles originate almost entirely from marine areas, with minor contribution from long-range transported dust or anthropogenic material. The Antarctic continent itself, unlike all other continental areas, has been thought to be practically free of aerosol sources. Here we present evidence of local aerosol production associated with melt-water ponds in continental Antarctica. We show that in air masses passing such ponds, new aerosol particles are efficiently formed and these particles grow up to sizes where they may act as cloud condensation nuclei (CCN). The precursor vapours responsible for aerosol formation and growth originate very likely from highly abundant cyanobacteria Nostoc commune (Vaucher) communities of local ponds. This is the first time freshwater vegetation has been identified as an aerosol precursor source. The influence of the new source on clouds and climate may increase in future Antarctica, and possibly elsewhere undergoing accelerating summer melting of semi-permanent snow cover.
Style APA, Harvard, Vancouver, ISO itp.
7

Gourdal, Margaux, Martine Lizotte, Guillaume Massé, Michel Gosselin, Michel Poulin, Michael Scarratt, Joannie Charette i Maurice Levasseur. "Dimethyl sulfide dynamics in first-year sea ice melt ponds in the Canadian Arctic Archipelago". Biogeosciences 15, nr 10 (29.05.2018): 3169–88. http://dx.doi.org/10.5194/bg-15-3169-2018.

Pełny tekst źródła
Streszczenie:
Abstract. Melt pond formation is a seasonal pan-Arctic process. During the thawing season, melt ponds may cover up to 90 % of the Arctic first-year sea ice (FYI) and 15 to 25 % of the multi-year sea ice (MYI). These pools of water lying at the surface of the sea ice cover are habitats for microorganisms and represent a potential source of the biogenic gas dimethyl sulfide (DMS) for the atmosphere. Here we report on the concentrations and dynamics of DMS in nine melt ponds sampled in July 2014 in the Canadian Arctic Archipelago. DMS concentrations were under the detection limit (< 0.01 nmol L−1) in freshwater melt ponds and increased linearly with salinity (rs = 0.84, p ≤ 0.05) from ∼ 3 up to ∼ 6 nmol L−1 (avg. 3.7 ± 1.6 nmol L−1) in brackish melt ponds. This relationship suggests that the intrusion of seawater in melt ponds is a key physical mechanism responsible for the presence of DMS. Experiments were conducted with water from three melt ponds incubated for 24 h with and without the addition of two stable isotope-labelled precursors of DMS (dimethylsulfoniopropionate), (D6-DMSP) and dimethylsulfoxide (13C-DMSO). Results show that de novo biological production of DMS can take place within brackish melt ponds through bacterial DMSP uptake and cleavage. Our data suggest that FYI melt ponds could represent a reservoir of DMS available for potential flux to the atmosphere. The importance of this ice-related source of DMS for the Arctic atmosphere is expected to increase as a response to the thinning of sea ice and the areal and temporal expansion of melt ponds on Arctic FYI.
Style APA, Harvard, Vancouver, ISO itp.
8

Geilfus, N. X., R. J. Galley, O. Crabeck, T. Papakyriakou, J. Landy, J. L. Tison i S. Rysgaard. "Inorganic carbon dynamics of melt pond-covered first year sea ice in the Canadian Arctic". Biogeosciences Discussions 11, nr 5 (23.05.2014): 7485–519. http://dx.doi.org/10.5194/bgd-11-7485-2014.

Pełny tekst źródła
Streszczenie:
Abstract. Melt pond formation is a common feature of the spring and summer Arctic sea ice. However, the role of the melt ponds formation and the impact of the sea ice melt on both the direction and size of CO2 flux between air and sea is still unknown. Here we describe the CO2-carbonate chemistry of melting sea ice, melt ponds and the underlying seawater associated with measurement of CO2 fluxes across first year landfast sea ice in the Resolute Passage, Nunavut, in June 2012. Early in the melt season, the increase of the ice temperature and the subsequent decrease of the bulk ice salinity promote a strong decrease of the total alkalinity (TA), total dissolved inorganic carbon (TCO2) and partial pressure of CO2 (pCO2) within the bulk sea ice and the brine. Later on, melt pond formation affects both the bulk sea ice and the brine system. As melt ponds are formed from melted snow the in situ melt pond pCO2 is low (36 μatm). The percolation of this low pCO2 melt water into the sea ice matrix dilutes the brine resulting in a strong decrease of the in situ brine pCO2 (to 20 μatm). As melt ponds reach equilibrium with the atmosphere, their in situ pCO2 increase (up to 380 μatm) and the percolation of this high concentration pCO2 melt water increase the in situ brine pCO2 within the sea ice matrix. The low in situ pCO2 observed in brine and melt ponds results in CO2 fluxes of −0.04 to −5.4 mmol m–2 d–1. As melt ponds reach equilibrium with the atmosphere, the uptake becomes less significant. However, since melt ponds are continuously supplied by melt water their in situ pCO2 still remains low, promoting a continuous but moderate uptake of CO2 (~ −1mmol m–2 d–1). The potential uptake of atmospheric CO2 by melting sea ice during the Arctic summer has been estimated from 7 to 16 Tg of C ignoring the role of melt ponds. This additional uptake of CO2 associated to Arctic sea ice needs to be further explored and considered in the estimation of the Arctic Ocean's overall CO2 budget.
Style APA, Harvard, Vancouver, ISO itp.
9

Mora, S. J. De, R. F. Whitehead i M. Gregory. "The chemical composition of glacial melt water ponds and streams on the McMurdo Ice Shelf, Antarctica". Antarctic Science 6, nr 1 (marzec 1994): 17–27. http://dx.doi.org/10.1017/s0954102094000039.

Pełny tekst źródła
Streszczenie:
Melt waters cover c. 20% of the McMurdo Ice Shelf during the austral summer. The streams, ponds, and lakes up to 104 m2 in area occur in two types of terrain systems with differing morphological, chemical, and biological characteristics: pinnacled ice (PI) areas with sparse sediment cover, low relief, and little biomass; and ice-cored moraine (ICM) areas with 10–20 cm sediment cover, hummocky topography with up to 20 m relief, occasional mirabilite deposits, and dense benthic cyanobacterial mats. Pond water composition in the two areas is markedly different. PI area melt waters have low salinities, <2270 mg 1−1 total dissolved salts (TDS), and near neutral pH, mean = 7.8. The chemical composition of PI waters closely follows that of diluted sea water, suggesting that the release of ions from the sea ice matrix of the ice shelf is the major solute source. In contrast, ICM area melt waters have a wide range of salinities, up to 60 400 mg 1−1 TDS and alkaline pH, mean = 9.3. The chemical composition in c. 40% of the ICM ponds investigated did not resemble that of sea water, but had higher relative abundances of SO2−4, Na+, K+ and Ca2+. Leaching of local salt deposits, particularly mirabilite, weathering of surficial sediments, and morphological features promoting closed-basin brine evolution are possible contributing factors to the enrichments.
Style APA, Harvard, Vancouver, ISO itp.
10

De Mora, S. J., P. A. Lee, A. Grout, C. Schall i K. G. Heumann. "Aspects of the biogeochemistry of sulphur in glacial melt water ponds on the McMurdo Ice Shelf, Antarctica". Antarctic Science 8, nr 1 (marzec 1996): 15–22. http://dx.doi.org/10.1017/s0954102096000041.

Pełny tekst źródła
Streszczenie:
The distribution of dimethylsulphide (DMS), together with the precursor dimethylsulphonio-propionate (DMSP) and the oxidation product dimethylsulphoxide (DMSO), was measured in melt waters on the McMurdo Ice Shelf in the immediate vicinity of Bratina Island. Conductivity in these sulphate dominated ponds was extremely variable, ranging from 0.106–52.3 mS cm−1. Similarly, chlorophyll a concentrations in the pond waters (1–150 μg 1−1) and mats (1.4–33 μg cm−2) differed considerably. The biomass was dominated by benthic felts of phototrophic cyanobacteria, which might act as a source of biogenic sulphur compounds in the ponds. The mean (and ranges) of concentrations of dissolved sulphur compounds (nmol 1−1) were: CS2 0.16 (<0.04–1.29); DMSPd 0.6 (<0.07–8.4); DMS 3.5 (<0.07–183); DMSO 27.9 (15.5–184.5). Very high concentrations of DMSO were ubiquitous in the ponds in the ice-cored moraine region of the ice shelf, with dissolved concentrations having been 1–2 orders of magnitude greater than those of DMS or DMSPd. It is difficult to ascribe the formation of DMSO solely to the conventionally accepted pathways of DMS oxidation by either bacterial activity or photochemical reactions. A direct biosynthetic production from phytoplankton or bacteria might be involved which means that DMSO in aquatic environments could act as a significant source of DMS rather than as a sink as generally supposed.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Melt ponds – Ecology – Antarctica"

1

Jungblut, Anne Dorothee Biotechnology &amp Biomolecular Sciences Faculty of Science UNSW. "Characterisation of microbial Mat communities in meltwater ponds of the McMurdo ice shelf, Antarctica". 2007. http://handle.unsw.edu.au/1959.4/40496.

Pełny tekst źródła
Streszczenie:
The investigation presented in this thesis examined the microbial and functional diversity of the meltwater ponds Fresh, Orange and Salt Ponds on the McMurdo Ice Shelf, near Bratina Island, Antarctica. These sites were chosen because of the ecological importance and absence of detailed characterisations of their diversity and function as part of Antarctica?s largest wetland. Particular focus was on cyanobacterial diversity, nitrogen fixation and secondary metabolite production. Using 16S rRNA gene and morphological analysis a large diversity of cyanobacteria (more than 22 phylotypes) was identified with high phylogenetic similarities (up to 99% sequence identity) to cyanobacteria from mats in other regions of Antarctica. In addition biogeographical distributions were identified including potentially endemic and cosmopolitan cyanobacteria. High salinities were also connected to the change and reduction of diversity. Lipid marker analyses were performed targeting hydrocarbons, ether-linked hydrocarbons, methylated fatty acid esters (FAME), wax esters, hopanols and sterols. Lipid biomarker profiles were similar to typical cyanobacteria dominated mats with major input from microorganisms including oxygenic and anoxygenic phototrophs, obligate aerobic and anaerobic heterotrophs that conduct the metabolic processes of fermentation, sulphate reduction, sulphate and iron-oxidation, methanogeneses. Signature lipids indicative of Chloroflexus and archaea, as well as branched aliphatic alkanes with quaternary substituted carbon atoms (BAQCs), were identified for the first time in Fresh, Orange and Salt Ponds. Based on nifH gene analysis, the nitrogen fixing diversity characterised in Orange Pond consisted of cyanobacterial Nostoc sp. as well as firmicutes, beta-, gamma- and delta-proteobacteria. Acetylene reduction assays and nifH gene RNA transcript diversity identified Nostoc sp. as a main contributor of nitrogenase activity in these ponds. Furthermore, analytical methods were used to identify the cyanobacterial secondary metabolites microcystins, although the genetic basis for this production and the toxin producer could not been identified. However non-ribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) genes were identified which could be the genetic basis for novel bioactives. The use of a multi-disciplinary approach synthesis and subsequent results significantly increased our understanding of the diversity and function of microbial mat communities in the unique meltwater ponds of the McMurdo Ice shelf, Antarctica.
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Melt ponds – Ecology – Antarctica"

1

Evans, T. W., M. J. Kalambokidis, I. Hawes i R. E. Summons. "Biomarker Signals from Microbial Mats in Melt Water Ponds from Bratina Island on the Mcmurdo Ice Shelf, Antarctica". W 29th International Meeting on Organic Geochemistry. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201903034.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii