Artykuły w czasopismach na temat „MEK/ERK Signaling”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „MEK/ERK Signaling”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Roy, Monideepa, Zhigang Li i David B. Sacks. "IQGAP1 Is a Scaffold for Mitogen-Activated Protein Kinase Signaling". Molecular and Cellular Biology 25, nr 18 (15.09.2005): 7940–52. http://dx.doi.org/10.1128/mcb.25.18.7940-7952.2005.
Pełny tekst źródłaEblen, Scott T., Jill K. Slack, Michael J. Weber i Andrew D. Catling. "Rac-PAK Signaling Stimulates Extracellular Signal-Regulated Kinase (ERK) Activation by Regulating Formation of MEK1-ERK Complexes". Molecular and Cellular Biology 22, nr 17 (1.09.2002): 6023–33. http://dx.doi.org/10.1128/mcb.22.17.6023-6033.2002.
Pełny tekst źródłaYuan, Jimin, Wan Hwa Ng, Zizi Tian, Jiajun Yap, Manuela Baccarini, Zhongzhou Chen i Jiancheng Hu. "Activating mutations in MEK1 enhance homodimerization and promote tumorigenesis". Science Signaling 11, nr 554 (30.10.2018): eaar6795. http://dx.doi.org/10.1126/scisignal.aar6795.
Pełny tekst źródłaGeest, Christian R., Miranda Buitenhuis, Marian J. A. Groot Koerkamp, Frank C. P. Holstege, Edo Vellenga i Paul J. Coffer. "Tight control of MEK-ERK activation is essential in regulating proliferation, survival, and cytokine production of CD34+-derived neutrophil progenitors". Blood 114, nr 16 (15.10.2009): 3402–12. http://dx.doi.org/10.1182/blood-2008-08-175141.
Pełny tekst źródłaDu, Lili, i Jesse D. Roberts. "Transforming growth factor-β downregulates sGC subunit expression in pulmonary artery smooth muscle cells via MEK and ERK signaling". American Journal of Physiology-Lung Cellular and Molecular Physiology 316, nr 1 (1.01.2019): L20—L34. http://dx.doi.org/10.1152/ajplung.00319.2018.
Pełny tekst źródłaHu, Wen-Yang, Parivash Afradiasbagharani, Ranli Lu, Lifeng Liu, Lynn A. Birch i Gail S. Prins. "Morphometric Analysis of Rat Prostate Development: Roles of MEK/ERK and Rho Signaling Pathways in Prostatic Morphogenesis". Biomolecules 11, nr 12 (4.12.2021): 1829. http://dx.doi.org/10.3390/biom11121829.
Pełny tekst źródłaChen, Haixia, Renpeng Guo, Qian Zhang, Hongchao Guo, Meng Yang, Zhenfeng Wu, Shan Gao, Lin Liu i Lingyi Chen. "Erk signaling is indispensable for genomic stability and self-renewal of mouse embryonic stem cells". Proceedings of the National Academy of Sciences 112, nr 44 (19.10.2015): E5936—E5943. http://dx.doi.org/10.1073/pnas.1516319112.
Pełny tekst źródłaEblen, Scott T., Jill K. Slack-Davis, Adel Tarcsafalvi, J. Thomas Parsons, Michael J. Weber i Andrew D. Catling. "Mitogen-Activated Protein Kinase Feedback Phosphorylation Regulates MEK1 Complex Formation and Activation during Cellular Adhesion". Molecular and Cellular Biology 24, nr 6 (15.03.2004): 2308–17. http://dx.doi.org/10.1128/mcb.24.6.2308-2317.2004.
Pełny tekst źródłaZhan, Fenghuang, Lei Shi, Siqing Wang, Hongwei Xu, Thai M. Cao, Chunjiao Xu, Yong Wu, Maurizio Zangari, Guiyuan Li i Guido J. Tricot. "CKS1B Mediates SKP2/p27Kip1-Independent Myeloma Cell Survival and Disease Progression through Activation of MEK/ERK and JAK/STAT3 Signaling Pathways." Blood 114, nr 22 (20.11.2009): 126. http://dx.doi.org/10.1182/blood.v114.22.126.126.
Pełny tekst źródłaPopik, Waldemar, i Paula M. Pitha. "Inhibition of CD3/CD28-Mediated Activation of the MEK/ERK Signaling Pathway Represses Replication of X4 but Not R5 Human Immunodeficiency Virus Type 1 in Peripheral Blood CD4+T Lymphocytes". Journal of Virology 74, nr 6 (15.03.2000): 2558–66. http://dx.doi.org/10.1128/jvi.74.6.2558-2566.2000.
Pełny tekst źródłaBurgermeister, Elke, i Rony Seger. "PPARγand MEK Interactions in Cancer". PPAR Research 2008 (2008): 1–16. http://dx.doi.org/10.1155/2008/309469.
Pełny tekst źródłaPatel, Aleena L., Eyan Yeung, Sarah E. McGuire, Andrew Y. Wu, Jared E. Toettcher, Rebecca D. Burdine i Stanislav Y. Shvartsman. "Optimizing photoswitchable MEK". Proceedings of the National Academy of Sciences 116, nr 51 (3.12.2019): 25756–63. http://dx.doi.org/10.1073/pnas.1912320116.
Pełny tekst źródłaChilamakuri, Rameswari, i Saurabh Agarwal. "Direct Targeting of the Raf-MEK-ERK Signaling Cascade Inhibits Neuroblastoma Growth". Current Oncology 29, nr 9 (10.09.2022): 6508–22. http://dx.doi.org/10.3390/curroncol29090512.
Pełny tekst źródłaAppleton, Tom, Shirine Usmani, John Mort i Frank Beier. "MOLECULAR CONTROL OF ARTICULAR CARTILAGE DEGENERATION BY TRANSFORMING GROWTH FACTOR ALPHA". Clinical & Investigative Medicine 31, nr 4 (1.08.2008): 2. http://dx.doi.org/10.25011/cim.v31i4.4787.
Pełny tekst źródłaXiong, Hui, Zhixuan Guo, Zengqi Tang, Xuechen Ai, Qing Qi, Xiuting Liu, Danqi Huang, Zhaofeng Li, Suyun Ji i Qing Guo. "Mesenchymal Stem Cells Activate the MEK/ERK Signaling Pathway and Enhance DNA Methylation via DNMT1 in PBMC from Systemic Lupus Erythematosus". BioMed Research International 2020 (17.11.2020): 1–8. http://dx.doi.org/10.1155/2020/4174082.
Pełny tekst źródłaKim, Kyung-Ah, Jung-Hyun Kim, Yuhui Wang i Hei Sook Sul. "Pref-1 (Preadipocyte Factor 1) Activates the MEK/Extracellular Signal-Regulated Kinase Pathway To Inhibit Adipocyte Differentiation". Molecular and Cellular Biology 27, nr 6 (8.01.2006): 2294–308. http://dx.doi.org/10.1128/mcb.02207-06.
Pełny tekst źródłaWang, Xiaomei, Yuan Lu, Luyi Wu, Chen Zhao, Chunbin Song, Shuguang Yu, Baixiao Zhao i in. "Moxibustion Inhibits the ERK Signaling Pathway and Intestinal Fibrosis in Rats with Crohn’s Disease". Evidence-Based Complementary and Alternative Medicine 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/198282.
Pełny tekst źródłaZhang, Jing, i Harvey F. Lodish. "Constitutive activation of the MEK/ERK pathway mediates all effects of oncogenic H-ras expression in primary erythroid progenitors". Blood 104, nr 6 (15.09.2004): 1679–87. http://dx.doi.org/10.1182/blood-2004-04-1362.
Pełny tekst źródłaChen, Qiong, Yuanyuan Hang, Tingting Zhang, Li Tan, Shuangdi Li i Yuli Jin. "USP10 promotes proliferation and migration and inhibits apoptosis of endometrial stromal cells in endometriosis through activating the Raf-1/MEK/ERK pathway". American Journal of Physiology-Cell Physiology 315, nr 6 (1.12.2018): C863—C872. http://dx.doi.org/10.1152/ajpcell.00272.2018.
Pełny tekst źródłaWojtaszewski, Jørgen F. P., Jan Lynge, Allan B. Jakobsen, Laurie J. Goodyear i Erik A. Richter. "Differential regulation of MAP kinase by contraction and insulin in skeletal muscle: metabolic implications". American Journal of Physiology-Endocrinology and Metabolism 277, nr 4 (1.10.1999): E724—E732. http://dx.doi.org/10.1152/ajpendo.1999.277.4.e724.
Pełny tekst źródłaAgosto-Marlin, Ibis M., i Gordon S. Mitchell. "Spinal BDNF-induced phrenic motor facilitation requires PKCθ activity". Journal of Neurophysiology 118, nr 5 (1.11.2017): 2755–62. http://dx.doi.org/10.1152/jn.00945.2016.
Pełny tekst źródłaSavoia, Paola, Paolo Fava, Filippo Casoni i Ottavio Cremona. "Targeting the ERK Signaling Pathway in Melanoma". International Journal of Molecular Sciences 20, nr 6 (25.03.2019): 1483. http://dx.doi.org/10.3390/ijms20061483.
Pełny tekst źródłaFernández, Isabel F., Sandra Blanco, José Lozano i Pedro A. Lazo. "VRK2 Inhibits Mitogen-Activated Protein Kinase Signaling and Inversely Correlates with ErbB2 in Human Breast Cancer". Molecular and Cellular Biology 30, nr 19 (2.08.2010): 4687–97. http://dx.doi.org/10.1128/mcb.01581-09.
Pełny tekst źródłaDiCamillo, Sandra J., Shenghong Yang, Maria V. Panchenko, Paul A. Toselli, Estee F. Naggar, Celeste B. Rich, Phillip J. Stone, Matthew A. Nugent i Mikhail P. Panchenko. "Neutrophil elastase-initiated EGFR/MEK/ERK signaling counteracts stabilizing effect of autocrine TGF-β on tropoelastin mRNA in lung fibroblasts". American Journal of Physiology-Lung Cellular and Molecular Physiology 291, nr 2 (sierpień 2006): L232—L243. http://dx.doi.org/10.1152/ajplung.00530.2005.
Pełny tekst źródłaWang, Weiping, Joan X. Chen, Rong Liao, Qingdong Deng, Jennifer J. Zhou, Shuang Huang i Peiqing Sun. "Sequential Activation of the MEK-Extracellular Signal-Regulated Kinase and MKK3/6-p38 Mitogen-Activated Protein Kinase Pathways Mediates Oncogenic ras-Induced Premature Senescence". Molecular and Cellular Biology 22, nr 10 (15.05.2002): 3389–403. http://dx.doi.org/10.1128/mcb.22.10.3389-3403.2002.
Pełny tekst źródłaDuShane, Jeanne K., Colleen L. Mayberry, Michael P. Wilczek, Sarah L. Nichols i Melissa S. Maginnis. "JCPyV-Induced MAPK Signaling Activates Transcription Factors during Infection". International Journal of Molecular Sciences 20, nr 19 (26.09.2019): 4779. http://dx.doi.org/10.3390/ijms20194779.
Pełny tekst źródłaGross, Sean M., i Peter Rotwein. "Quantification of growth factor signaling and pathway cross talk by live-cell imaging". American Journal of Physiology-Cell Physiology 312, nr 3 (1.03.2017): C328—C340. http://dx.doi.org/10.1152/ajpcell.00312.2016.
Pełny tekst źródłaCho, Chung-Hyun, Chang Sup Lee, Mikyung Chang, Il-Ho Jang, Soo Jin Kim, Inhwan Hwang, Sung Ho Ryu, Chin O. Lee i Gou Young Koh. "Localization of VEGFR-2 and PLD2 in endothelial caveolae is involved in VEGF-induced phosphorylation of MEK and ERK". American Journal of Physiology-Heart and Circulatory Physiology 286, nr 5 (maj 2004): H1881—H1888. http://dx.doi.org/10.1152/ajpheart.00786.2003.
Pełny tekst źródłaCai, Yingyun, Yin Liu i Xuming Zhang. "Suppression of Coronavirus Replication by Inhibition of the MEK Signaling Pathway". Journal of Virology 81, nr 2 (1.11.2006): 446–56. http://dx.doi.org/10.1128/jvi.01705-06.
Pełny tekst źródłaSantos, Eugenio, i Piero Crespo. "The RAS-ERK pathway: A route for couples". Science Signaling 11, nr 554 (30.10.2018): eaav0917. http://dx.doi.org/10.1126/scisignal.aav0917.
Pełny tekst źródłaWu, Pui-Kei, Andrew Becker i Jong-In Park. "Growth Inhibitory Signaling of the Raf/MEK/ERK Pathway". International Journal of Molecular Sciences 21, nr 15 (30.07.2020): 5436. http://dx.doi.org/10.3390/ijms21155436.
Pełny tekst źródłaLuna, Adrian J., Rosa T. Sterk, Anastacia M. Griego-Fisher, Joon-Yong Chung, Kiersten L. Berggren, Virginie Bondu, Pamela Barraza-Flores i in. "MEK/ERK signaling is a critical regulator of high-risk human papillomavirus oncogene expression revealing therapeutic targets for HPV-induced tumors". PLOS Pathogens 17, nr 1 (22.01.2021): e1009216. http://dx.doi.org/10.1371/journal.ppat.1009216.
Pełny tekst źródłaHuang, Jyun-Bin, Shih-Pin Hsu, Hsiu-Yung Pan, Shang-Der Chen, Shu-Fang Chen, Tsu-Kung Lin, Xuan-Ping Liu i in. "Peroxisome Proliferator-Activated Receptor γ Coactivator 1α Activates Vascular Endothelial Growth Factor That Protects Against Neuronal Cell Death Following Status Epilepticus through PI3K/AKT and MEK/ERK Signaling". International Journal of Molecular Sciences 21, nr 19 (30.09.2020): 7247. http://dx.doi.org/10.3390/ijms21197247.
Pełny tekst źródłaTan, Andy Hee-Meng, i Kong-Peng Lam. "Pharmacologic Inhibition of MEK–ERK Signaling Enhances Th17 Differentiation". Journal of Immunology 184, nr 4 (8.01.2010): 1849–57. http://dx.doi.org/10.4049/jimmunol.0901509.
Pełny tekst źródłaTang, Fen, Mario Thiego F. Pacheco, Ping Chen, Dan Liang i Wei Li. "Secretogranin III promotes angiogenesis through MEK/ERK signaling pathway". Biochemical and Biophysical Research Communications 495, nr 1 (styczeń 2018): 781–86. http://dx.doi.org/10.1016/j.bbrc.2017.11.080.
Pełny tekst źródłaWang, Ao-Xue, i Xiao-Yi Qi. "Targeting RAS/RAF/MEK/ERK signaling in metastatic melanoma". IUBMB Life 65, nr 9 (29.07.2013): 748–58. http://dx.doi.org/10.1002/iub.1193.
Pełny tekst źródłaStansfield, Brian K., Waylan K. Bessler, Raghuveer Mali, Julie A. Mund, Brandon D. Downing, Reuben Kapur i David A. Ingram. "Ras-Mek-Erk Signaling Regulates Nf1 Heterozygous Neointima Formation". American Journal of Pathology 184, nr 1 (styczeń 2014): 79–85. http://dx.doi.org/10.1016/j.ajpath.2013.09.022.
Pełny tekst źródłaBruner, Joshua Kyle, Li Li, Hayley S. Ma, Alice Can Ran Qin, Mark J. Levis, Keith W. Pratz, Christine A. Pratilas i Donald Small. "Signaling Adaptation to TKI Treatment Reactivates ERK Signaling in FLT3/ITD Leukemia". Blood 128, nr 22 (2.12.2016): 33. http://dx.doi.org/10.1182/blood.v128.22.33.33.
Pełny tekst źródłaHuang, Qin, Ying Huang, Lan He, Hongyan Zhao, Yang Lu i Ling Jiang. "Bone Marrow Mesenchymal Stem Cell (BMSC) Downregulates Vascular Endothelial Growth Factor (VEGF) and Promotes the Apoptosis of Melanoma Cells". Journal of Biomaterials and Tissue Engineering 12, nr 8 (1.08.2022): 1594–601. http://dx.doi.org/10.1166/jbt.2022.3088.
Pełny tekst źródłaCesta Incani, Ursula, Anais Del Curatolo, Cristina Di Sanza, Italia Falcone, Francesco Cognetti, Ludovica Ciuffreda i Michele Milella. "Synergistic activity of vertical combinations of agents targeting multiple steps along the RAF/MEK/ERK cascade as a therapeutic strategy in human tumors." Journal of Clinical Oncology 30, nr 15_suppl (20.05.2012): e13572-e13572. http://dx.doi.org/10.1200/jco.2012.30.15_suppl.e13572.
Pełny tekst źródłaXu, Long, Ming Liu, Tanxiao Huang, Suo Peisu, Lele Song, Yuanyuan Liu, Mimi Fu, Chunmei Zhang, Jeremy Edwards i Shifu Chen. "Association of Ras-Raf-MEK-Erk/JNK pathway mutations with overall survival for lung squamous cell carcinoma patients." Journal of Clinical Oncology 37, nr 15_suppl (20.05.2019): e14754-e14754. http://dx.doi.org/10.1200/jco.2019.37.15_suppl.e14754.
Pełny tekst źródłaPashirzad, Mehran, Reihaneh Khorasanian, Maryam Mahmoudi Fard, Mohammad-Hassan Arjmand, Hadis Langari, Majid Khazaei, Saman Soleimanpour i in. "The Therapeutic Potential of MAPK/ERK Inhibitors in the Treatment of Colorectal Cancer". Current Cancer Drug Targets 21, nr 11 (grudzień 2021): 932–43. http://dx.doi.org/10.2174/1568009621666211103113339.
Pełny tekst źródłaMorita, Ken, Keisuke Kataoka, Junji Koya, Takako Tsuruta, Tomohiko Sato i Mineo Kurokawa. "BAALC Acts As a Scaffold-Like Protein In The ERK Signaling Pathway and Promotes Leukemogenesis By Facilitating MEK–mediated ERK Activation". Blood 122, nr 21 (15.11.2013): 2509. http://dx.doi.org/10.1182/blood.v122.21.2509.2509.
Pełny tekst źródłaYin, Dexin, Changgeng Fu i Dajun Sun. "Silence of lncRNA UCA1 Represses the Growth and Tube Formation of Human Microvascular Endothelial Cells Through miR-195". Cellular Physiology and Biochemistry 49, nr 4 (2018): 1499–511. http://dx.doi.org/10.1159/000493454.
Pełny tekst źródłaChu, Zhili, Jiangang Ma, Caiying Wang, Kejia Lu, Xiaoqin Li, Haijin Liu, Xinglong Wang, Sa Xiao i Zengqi Yang. "Newcastle Disease Virus V Protein Promotes Viral Replication in HeLa Cells through the Activation of MEK/ERK Signaling". Viruses 10, nr 9 (12.09.2018): 489. http://dx.doi.org/10.3390/v10090489.
Pełny tekst źródłaHo, Kenneth K. Y., Siddhartha Srivastava, Patrick C. Kinnunen, Krishna Garikipati, Gary D. Luker i Kathryn E. Luker. "Oscillatory ERK Signaling and Morphology Determine Heterogeneity of Breast Cancer Cell Chemotaxis via MEK-ERK and p38-MAPK Signaling Pathways". Bioengineering 10, nr 2 (18.02.2023): 269. http://dx.doi.org/10.3390/bioengineering10020269.
Pełny tekst źródłaLi, Yong Q., Charles S. T. Hii, Maurizio Costabile, David Goh, Channing J. Der i Antonio Ferrante. "Regulation of Lymphotoxin Production by the p21ras-raf-MEK-ERK Cascade in PHA/PMA-Stimulated Jurkat Cells". Journal of Immunology 162, nr 6 (15.03.1999): 3316–20. http://dx.doi.org/10.4049/jimmunol.162.6.3316.
Pełny tekst źródłaPurkerson, Jeffrey M., i David C. Parker. "Differential Coupling of Membrane Ig and CD40 to the Extracellularly Regulated Kinase Signaling Pathway". Journal of Immunology 160, nr 5 (1.03.1998): 2121–29. http://dx.doi.org/10.4049/jimmunol.160.5.2121.
Pełny tekst źródłaZou, Qiang, Jin Jin, Yichuan Xiao, Hongbo Hu, Xiaofei Zhou, Zuliang Jie, Xiaoping Xie, James Y. H. Li, Xuhong Cheng i Shao-Cong Sun. "T cell development involves TRAF3IP3-mediated ERK signaling in the Golgi". Journal of Experimental Medicine 212, nr 8 (20.07.2015): 1323–36. http://dx.doi.org/10.1084/jem.20150110.
Pełny tekst źródłaModi, Prashant Kumar, Narayana Komaravelli, Neha Singh i Pushkar Sharma. "Interplay between MEK-ERK signaling, cyclin D1, and cyclin-dependent kinase 5 regulates cell cycle reentry and apoptosis of neurons". Molecular Biology of the Cell 23, nr 18 (15.09.2012): 3722–30. http://dx.doi.org/10.1091/mbc.e12-02-0125.
Pełny tekst źródła