Gotowa bibliografia na temat „MEK/ERK Signaling”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „MEK/ERK Signaling”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "MEK/ERK Signaling"
Roy, Monideepa, Zhigang Li i David B. Sacks. "IQGAP1 Is a Scaffold for Mitogen-Activated Protein Kinase Signaling". Molecular and Cellular Biology 25, nr 18 (15.09.2005): 7940–52. http://dx.doi.org/10.1128/mcb.25.18.7940-7952.2005.
Pełny tekst źródłaEblen, Scott T., Jill K. Slack, Michael J. Weber i Andrew D. Catling. "Rac-PAK Signaling Stimulates Extracellular Signal-Regulated Kinase (ERK) Activation by Regulating Formation of MEK1-ERK Complexes". Molecular and Cellular Biology 22, nr 17 (1.09.2002): 6023–33. http://dx.doi.org/10.1128/mcb.22.17.6023-6033.2002.
Pełny tekst źródłaYuan, Jimin, Wan Hwa Ng, Zizi Tian, Jiajun Yap, Manuela Baccarini, Zhongzhou Chen i Jiancheng Hu. "Activating mutations in MEK1 enhance homodimerization and promote tumorigenesis". Science Signaling 11, nr 554 (30.10.2018): eaar6795. http://dx.doi.org/10.1126/scisignal.aar6795.
Pełny tekst źródłaGeest, Christian R., Miranda Buitenhuis, Marian J. A. Groot Koerkamp, Frank C. P. Holstege, Edo Vellenga i Paul J. Coffer. "Tight control of MEK-ERK activation is essential in regulating proliferation, survival, and cytokine production of CD34+-derived neutrophil progenitors". Blood 114, nr 16 (15.10.2009): 3402–12. http://dx.doi.org/10.1182/blood-2008-08-175141.
Pełny tekst źródłaDu, Lili, i Jesse D. Roberts. "Transforming growth factor-β downregulates sGC subunit expression in pulmonary artery smooth muscle cells via MEK and ERK signaling". American Journal of Physiology-Lung Cellular and Molecular Physiology 316, nr 1 (1.01.2019): L20—L34. http://dx.doi.org/10.1152/ajplung.00319.2018.
Pełny tekst źródłaHu, Wen-Yang, Parivash Afradiasbagharani, Ranli Lu, Lifeng Liu, Lynn A. Birch i Gail S. Prins. "Morphometric Analysis of Rat Prostate Development: Roles of MEK/ERK and Rho Signaling Pathways in Prostatic Morphogenesis". Biomolecules 11, nr 12 (4.12.2021): 1829. http://dx.doi.org/10.3390/biom11121829.
Pełny tekst źródłaChen, Haixia, Renpeng Guo, Qian Zhang, Hongchao Guo, Meng Yang, Zhenfeng Wu, Shan Gao, Lin Liu i Lingyi Chen. "Erk signaling is indispensable for genomic stability and self-renewal of mouse embryonic stem cells". Proceedings of the National Academy of Sciences 112, nr 44 (19.10.2015): E5936—E5943. http://dx.doi.org/10.1073/pnas.1516319112.
Pełny tekst źródłaEblen, Scott T., Jill K. Slack-Davis, Adel Tarcsafalvi, J. Thomas Parsons, Michael J. Weber i Andrew D. Catling. "Mitogen-Activated Protein Kinase Feedback Phosphorylation Regulates MEK1 Complex Formation and Activation during Cellular Adhesion". Molecular and Cellular Biology 24, nr 6 (15.03.2004): 2308–17. http://dx.doi.org/10.1128/mcb.24.6.2308-2317.2004.
Pełny tekst źródłaZhan, Fenghuang, Lei Shi, Siqing Wang, Hongwei Xu, Thai M. Cao, Chunjiao Xu, Yong Wu, Maurizio Zangari, Guiyuan Li i Guido J. Tricot. "CKS1B Mediates SKP2/p27Kip1-Independent Myeloma Cell Survival and Disease Progression through Activation of MEK/ERK and JAK/STAT3 Signaling Pathways." Blood 114, nr 22 (20.11.2009): 126. http://dx.doi.org/10.1182/blood.v114.22.126.126.
Pełny tekst źródłaPopik, Waldemar, i Paula M. Pitha. "Inhibition of CD3/CD28-Mediated Activation of the MEK/ERK Signaling Pathway Represses Replication of X4 but Not R5 Human Immunodeficiency Virus Type 1 in Peripheral Blood CD4+T Lymphocytes". Journal of Virology 74, nr 6 (15.03.2000): 2558–66. http://dx.doi.org/10.1128/jvi.74.6.2558-2566.2000.
Pełny tekst źródłaRozprawy doktorskie na temat "MEK/ERK Signaling"
Lam, King-yin Andy. "Differential regulation of FOXM1 isoforms by RaF/MEK/ERK signaling". Click to view the E-thesis via HKUTO, 2010. http://sunzi.lib.hku.hk/hkuto/record/B44251014.
Pełny tekst źródłaLam, King-yin Andy, i 林敬賢. "Differential regulation of FOXM1 isoforms by RaF/MEK/ERK signaling". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B44251014.
Pełny tekst źródłaSolf, Andrea. "Transkriptionelle Netzwerke der RAS-abhängigen, MEK-ERK- vermittelten Transformation". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2011. http://dx.doi.org/10.18452/16295.
Pełny tekst źródłaTranscriptional networks represent the final level of internal signal transmission. They are embedded in different signalling pathways and use genetic as well as epi-genetic mechanisms to regulate their according target genes. During oncogenic trans-formation they are undergoing massive rearrangements in composition, regulation and interaction. This leads to radical changes in the transcriptome and drives the on-cogenic phenotype of the according cells. My thesis employs the composition of the MEK-ERK-dependent transcriptional net-work and its alteration during the HRAS-oncogene-mediated transformation in HA1-cells. By commencing from already known components: SRF, Ternary Complex Fac-tors (TCF: SAP1, SAP2/ELK3, ELK1) and members of the AP1-complex (JUN, FOS-proteins) I analyzed the alteration in expression of secondary targets and their inter-action as well as their relation to the superior factors. Therefore I compared genome wide expression profiles (Affymetrix, HG-U133A) of immortal HA1EB and HRASV12-oncogene-transformed HA1ER-cells with and without U0126-induced MEK/ERK-inhibition and extracted several MEK/ERK-dependent transcription factors. Among them where FRA1 and ELK3, two transcription factors already known to be involved in oncogenesis and proliferation associated processes. ELK3 needs SRF as crucial binding partner to function. Therefor I also included SRF into the subsequent analysis. The three transcription factors function in different time-dependent hierarchy states so we supposed a putative hierachical network be-tween them. I established transient knockdown cells deriving from HA1EB and HA1ER for all three transcription factors and generated further expression profiles from them. Additionally I verified the importance of these transcription factors on survival and proliferation via MTT and Softagar experiments. Using different statis-tically and bioinformatical methods (GSEA, TRAP) in collaboration with the Max-Planck-Institute for molecular Genetics Berlin, several direct and indirect targets of these transcription factors were predicted. These were partially overlapping in all transcription factors. Also, in comparison of the immortal and the transformed cell line, a shift of functionalities and composition of the different target gene populations and collaborating factors could be detected for all three transcription factors. It was found that in HA1EB FRA1 seems more likely to regulate immunresponsive genes as well as genes associated with the cytoskeleton and nucleus organisation whereas in HA1ER FRA1 regulates a large group of transcription- and signalling-associated genes. Additionally it could be shown that in both cell lines FRA1 regulates genes in-volved in epigenetic processes as well as circadian rhythms which are known to be important aspects in oncogenic transformation. I verified 37 different putative target genes of FRA1 using qRT-PCR (Taqman) and partially also ChIP-analysis. Of these 37genes, 5 were fully validated as directly regu-lated targets of FRA1: FRA1, AEBP1, YWHAZ, NPAS2 and TCFL5. They imply functionalities connected to proliferation and differentiation (AEBP1, FRA1, TCFL5) as well as apoptosis (YWHAZ) cell cycle control and circadian rhythm (NPAS2, AEBP1), feedbacks into the signalling (YWHAZ, AEBP1) and metabolism (NPAS2, AEBP1). Summarised the work of this thesis contributes to the decipherment of the direct and indirect targets of the according transcription factors and strengthens the argument of a general and massive shift of the transcriptional network during oncogenic trans-formation of cells. The importance of all three transcription factors on the survival of genes could be proved via proliferation assays. Additionally the functionality of their according targets could be integrated into processes connected to oncogenic trans-formation.
Fraser, Sasha. "Development of Dual-Pathway Inhibitors of Raf/MEK/ERK and PI3K/Akt Signaling Pathways". VCU Scholars Compass, 2011. http://scholarscompass.vcu.edu/etd/2619.
Pełny tekst źródłaHodge, Jacob G. "Regulation of the MEK/ERK signaling cascade by ADAM12 in triple-negative breast cancer cells". Thesis, Kansas State University, 2016. http://hdl.handle.net/2097/35228.
Pełny tekst źródłaBiochemistry and Molecular Biophysics Interdepartmental Program
Anna Zolkiewska
Mitogen-activated protein kinase (MAPK) signaling plays an important role in the proliferation, survival, and therapy resistance of breast cancer cells. Two important protein kinases involved in the MAPK pathway are MEK and ERK. The MEK/ERK signaling cascade can be stimulated by activation of the epidermal growth factor receptor (EGFR) upon binding of EGF-like ligands, which are released from cells by ADAM proteases. EGFR is frequently overexpressed in triple-negative breast cancer (TNBC), a particularly aggressive form of breast cancer. Our analysis of clinical data revealed that high expression of ADAM12, but not other ADAMs, in TNBC is associated with poor patient survival. Thus, we hypothesized that ADAM12 plays a critical role in the progression of TNBC, possibly by stimulating MEK/ERK activity in an EGFR-dependent manner. To test this hypothesis, ADAM12 was knocked-down (KD) in SUM159PT TNBC cells, which express high levels of the endogenous ADAM12 protein. An antibody array assay indicated a significant decrease in the activation of the MAPK pathway in SUM159PT cells after ADAM12 KD. The decrease in MAPK activity was further confirmed by Western blotting using phospho-MEK and phospho-ERK specific antibodies. Additionally, conditioned media from ADAM12-deficient SUM159PT cells failed to support the survival of MCF10A cells, suggesting that ADAM12 KD reduced the release of pro-survival growth factors from SUM159PT cells. Based upon this data, we propose that ADAM12 is a novel regulator of the MAPK pathway and a potential therapeutic target in breast cancer.
Rapozo, Viviane Younes. "Sinalização da MAPK/ERK na diferenciaçãao da oligodendroglia: efeitos de inibidores da MEK sobre a morfologia e distribuição de proteínas de oligodendrócitos/mielina in vitro". Universidade do Estado do Rio de Janeiro, 2009. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=9529.
Pełny tekst źródłaA via de sinalização da cinase regulada por fatores extracelulares, da família das proteínas cinases ativadas por mitógenos (MAPK/ERK) é importante tanto para a sobrevivência como para a progressão da diferenciação de oligodendrócitos. Neste trabalho, a via da MAPK/ERK foi avaliada na oligodendroglia in vitro com a utilização de inibidores da MEK. A morfologia celular, assim como a distribuição de proteínas foram analisadas em diferentes estágios de maturação da oligodendroglia. Culturas primárias de oligodendrócitos foram tratadas com os inibidores da MEK PD98059 ou U0126, aos 5 ou 11dias in vitro (div), por 30min, 24 ou 48h. A oligodendroglia foi distinguida com marcadores estágio-específicos: A2B5, 23nucleotídeo cíclico 3 fosfodiesterase (CNPase) e proteína básica de mielina (MBP), e classificada de acordo com sua morfologia em diferentes estágios de desenvolvimento. O tratamento aumentou significativamente o número de células com morfologia mais imatura e diminuiu o número de células maduras. Além disso, aumentou o número de células redondas e sem prolongamentos as quais não puderam ser classificadas em nenhum dos estágios de desenvolvimento da oligodendroglia. Os efeitos mais evidentes foram observados logo após o menor tempo de tratamento. Células redondas eram positivas para CNPase e MBP, porém não foram marcadas com A2B5 ou com NG2, indicando que seriam células maduras incapazes de estender ou manter seus prolongamentos. De fato, estas mudanças foram acompanhadas por alterações na distribuição de proteínas de oligodendrócitos como a MBP e a CNPase, assim como alterações em proteínas de citoesqueleto, como actina, tubulina e na cinase de adesão focal (FAK). A MBP foi observada nas células tratadas em um padrão de distribuição desorganizado e disperso, oposto ao padrão contínuo que é observado nas células das culturas controle. Além disso, o tratamento causou uma desorganização na distribuição da CNPase, actina e tubulina. Nas células das culturas controle, estas proteínas apresentam um padrão organizado compondo as estruturas de citoqueleto semelhantes a nervuras. Após um pequeno período de tratamento (30min), actina e tubulina apresentaram o mesmo padrão de marcação puntiforme que a CNPase apresentou. O tratamento também reduziu os pontos de adesão focal demonstrados pela FAK. Com o decorrer do tratamento, após 24 e 48h, actina e tubulina aparentavam estar se reorganizando em um padrão filamentar. Estes resultados indicam um efeito importante da via da MAPK/ERK na ramificação e alongamento dos prolongamentos dos oligodendrócitos, com possíveis consequências para a formação da bainha de mielina.
The mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway is important for both long-term survival and timing of the progression of oligodendrocyte differentiation. In this work, the MAPK/ERK signaling in oligodendroglia was studied in vitro by using MEK inhibitors. Cell morphology and distribution of proteins were analyzed in different stages of maturation. Primary cultures of oligodendroglia were treated with the MEK inhibitors PD98059 or U0126, at 5 or 11div for 30min, 24 or 48h. Oligodendroglial cells were distinguished by using stage specific markers: NG2 proteoglycan, A2B5, 23nucleotide-cyclic 3phosphodiesterase (CNPase) and myelin basic protein (MBP), and classified according to their morphology into different developmental stages. Treatment significantly increased the number of cells with more immature morphologies and decreased the number of mature cells. Furthermore, it increased the number of rounded cells that could not be classified into any of the oligodendroglial developmental stages. The strongest effects were usually observed shortly after treatment. Rounded cells were CNPase/MBP positive and they were not stained by anti-NG2 or A2B5, indicating that they were mature cells unable either to extend and/or to maintain their processes. In fact, these changes were accompanied by alterations in the distribution of the oligodendroglial proteins MBP and CNPase, and alterations in cytoskeleton proteins, as actin, tubulin and the focal adhesion kinase (FAK). MBP was observed in a continuous distribution in cell body and processes in control cultures. Furthermore, in treated cultures a disorganized pattern of distribution of CNPase, actin and tubulin was observed. In control cultures, these proteins compose the cytoskeleton vein-like structures. By the other side, after a short time of MEK inhibition (30min), actin and tubulin showed the same punctual pattern observed in CNPase distribution. Treatment also caused a reduction of focal adhesion sites showed by FAK. As treatment progressed, after 24 and 48h, actin and tubulin seemed to be rearranged into a filament-like pattern. These data showed an effect of the MAPK/ERK pathway on oligodendroglial branching, with possible consequences for the formation of the myelin sheath.
Nörz, Dominik Sebastian [Verfasser], i Manfred [Akademischer Betreuer] Jücker. "Dual Inhibition of PI3K-AKT-mTOR- and RAF-MEK-ERK signaling is synergistic in cholangiocarcinoma and reverses acquired resistance to MEK-Inhibitors / Dominik Sebastian Nörz. Betreuer: Manfred Jücker". Hamburg : Staats- und Universitätsbibliothek Hamburg, 2016. http://d-nb.info/1093411325/34.
Pełny tekst źródłaCampbell, Sara J. "Mechanisms of Moraxella catarrhalis Induced Immune Signaling in the Pulmonary Epithelium". University of Toledo Health Science Campus / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=mco1268141520.
Pełny tekst źródłaTham, Marius [Verfasser], i Petra [Akademischer Betreuer] Boukamp. "The role of stromal Wnt/Beta-catenin and epidermal Ras-Raf-MEK-ERK MAPK signaling in human squamous cell carcinoma / Marius Tham ; Betreuer: Petra Boukamp". Heidelberg : Universitätsbibliothek Heidelberg, 2016. http://d-nb.info/1180614097/34.
Pełny tekst źródłaWieland, Anja. "Isoform-spezifische Funktionen mitogen-aktivierter Proteinkinasen in Transkriptionskontrolle und Proliferation". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2011. http://dx.doi.org/10.18452/16459.
Pełny tekst źródłaIn many human neoplasia an increased activity of the RAF/MEK/ERK- signaling pathway is found. First it was assumed that this raised activity is caused primarily by the RAS onco-genes. However, meanwhile mutations in the RAF genes could be also proved in human neo-plasia. A number of enzyme inhibitors have been developed against the RAF and MEK pro-teins. The disadvantage of many of these inhibitors is that they cannot distinguish between the different kinase isoforms. In this work it has succeeded the first time to inhibit every compo-nent of the RAF/MEK/ERK- signaling pathway individually by means of interference RNA. Beside this, the role of the different isoforms in the proliferation, morphology and genetic profile of transformed cells could be defined. For the first time A-Raf could be assigned an anti-apoptotic role in NIH3T3-pEJ cells. This inhibition of the apoptosis possibly runs through a Mek2-dependent way and is coupled to the mitochondria. For both Mek kinases different functions could be shown in the downstream signaling. Mek2 plays the leading role in the activation of both downstream kinases Erk1 and Erk2. The loss of the Mek1 isoform expression is possibly compensated through an increased expression of Mek2 and does not affect the phosphorylation of Erk1 / 2 so strongly. A discri-mination between the regulation of proliferation and the control of the morphological trans-formation could be worked out by the use of Erk1 and Erk2 specific siRNAs. By the use of micorarray an expression profile of both phenotypes has assigned. Beside differences between the different kinases new, potential feedback pathways could be described.
Książki na temat "MEK/ERK Signaling"
Alves, Ines Teles, Jan Trapman i Guido Jenster. Molecular biology of prostate cancer. Redaktor James W. F. Catto. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199659579.003.0059.
Pełny tekst źródłaCzęści książek na temat "MEK/ERK Signaling"
McCubrey, James A., Linda S. Steelman, Jörg Bäsecke i Alberto M. Martelli. "Raf/MEK/ERK Signaling". W Targeted Therapy of Acute Myeloid Leukemia, 275–305. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1393-0_14.
Pełny tekst źródłaGalabova-Kovacs, Gergana, i Manuela Baccarini. "Deciphering Signaling Pathways In Vivo: The Ras/Raf/Mek/Erk Cascade". W MAP Kinase Signaling Protocols, 421–31. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-795-2_26.
Pełny tekst źródłaMcCubrey, James A., Linda S. Steelman, William H. Chappell, Stephen L. Abrams, Richard A. Franklin, Giuseppe Montalto, Melchiorre Cervello i in. "New Agents and Approaches for Targeting the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR Cell Survival Pathways". W Cell Death Signaling in Cancer Biology and Treatment, 331–72. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5847-0_13.
Pełny tekst źródłaLe, Nhat-Tu, Nguyet Minh Hoang, Keigi Fujiwara i Jun-ichi Abe. "MEK5/ERK5". W Encyclopedia of Signaling Molecules, 3052–74. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_617.
Pełny tekst źródłaLe, Nhat-Tu, Nguyet Minh Hoang, Keigi Fujiwara i Jun-ichi Abe. "MEK5/ERK5". W Encyclopedia of Signaling Molecules, 1–23. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4614-6438-9_617-1.
Pełny tekst źródłaGewies, Andreas, Jürgen Ruland, Alexey Kotlyarov, Matthias Gaestel, Shiri Procaccia, Rony Seger, Shin Yasuda i in. "MEK5/ERK5". W Encyclopedia of Signaling Molecules, 1065–74. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_617.
Pełny tekst źródłaGewies, Andreas, Jürgen Ruland, Alexey Kotlyarov, Matthias Gaestel, Shiri Procaccia, Rony Seger, Shin Yasuda i in. "Mitogen-Activated Protein Kinase (MAPK)/Extracellular Signal-Regulated Kinase (ERK) Kinases 1/2 (MEK1/2)". W Encyclopedia of Signaling Molecules, 1081. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_100810.
Pełny tekst źródłaGewies, Andreas, Jürgen Ruland, Alexey Kotlyarov, Matthias Gaestel, Shiri Procaccia, Rony Seger, Shin Yasuda i in. "MEK5/ERK5: Mitogen-Activated Protein Kinase 5/Extracellular Signal-Regulated Kinase 5". W Encyclopedia of Signaling Molecules, 1074. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_100786.
Pełny tekst źródłaSee, Wendy L., i Joydeep Mukherjee. "Targeting the RAS-RAF-MEK-ERK Signaling Pathway in Gliomas". W Handbook of Brain Tumor Chemotherapy, Molecular Therapeutics, and Immunotherapy, 323–32. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-812100-9.00022-x.
Pełny tekst źródłaMcMahon, Martin. "Steroid receptor fusion proteins for conditional activation of raf-MEK-ERK signaling pathway". W Methods in Enzymology, 401–17. Elsevier, 2001. http://dx.doi.org/10.1016/s0076-6879(01)32218-8.
Pełny tekst źródłaStreszczenia konferencji na temat "MEK/ERK Signaling"
Kaur, Navneet, Robert Lewis, Adrian Black i Jennifer Black. "Abstract 3466: Growth inhibitory MEK-ERK signaling in the intestinal epithelium". W Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-3466.
Pełny tekst źródłaRupp, Carina, Thomas Rösner, Ulrike Bauer, Birgit Kohnke-Ertel, Christian Lechler, Saumya Manmadhan, Katja Steiger i in. "Relevance of MEK/ERK signaling in biliary differentiation in murine liver cancer". W 38. Jahrestagung der Deutsche Arbeitsgemeinschaft zum Studium der Leber. Georg Thieme Verlag, 2022. http://dx.doi.org/10.1055/s-0041-1740779.
Pełny tekst źródłaRupp, C., T. Rösner, U. Bauer, B. Kohnke-Ertel, C. Lechler, K. Steiger, C. Mogler i in. "MEK/ERK signaling downstream of mutant Kras drives biliary differentiation in murine cholangiocarcinoma". W Viszeralmedizin 2021 Gemeinsame Jahrestagung Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS), Sektion Endoskopie der DGVS, Deutsche Gesellschaft für Allgemein und Viszeralchirurgie (DGAV). Georg Thieme Verlag KG, 2021. http://dx.doi.org/10.1055/s-0041-1733626.
Pełny tekst źródłaRupp, C., T. Rösner, U. Bauer, B. Kohnke-Ertel, C. Lechler, K. Steiger, C. Mogler i in. "MEK/ERK signaling downstream of mutant Kras drives biliary differentiation in murine cholangiocarcinoma". W Viszeralmedizin 2021 Gemeinsame Jahrestagung Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS), Sektion Endoskopie der DGVS, Deutsche Gesellschaft für Allgemein und Viszeralchirurgie (DGAV). Georg Thieme Verlag KG, 2021. http://dx.doi.org/10.1055/s-0041-1733626.
Pełny tekst źródłaShah, Arpit D., Michael Bouchard i Adrian C. Shieh. "Abstract 4155: Interstitial fluid flow-induced hepatocellular carcinoma cell invasion requires MEK/ERK signaling". W Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-4155.
Pełny tekst źródłaXing, Yiming, Changgong Li, Zea Borok i Parviz Minoo. "Lack Of Morphogenetic Orchestration Associated With Reduced ERK/MEK Signaling In Pten Lung Endoderm". W American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a3547.
Pełny tekst źródłaStowe, Irma B., Timothy Stowe, Frank McCormick i Ellen Mercado. "Abstract LB-151: Spred1 and neurofibromin interact to negatively regulate Ras/Raf/MEK/ERK signaling". W Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-lb-151.
Pełny tekst źródłaOh, You-Take, Weilong Yao, Jiusheng Deng, Ping Yue i Shi-Yong Sun. "Abstract LB-101: The expression of death receptor 4 is positively regulated by MEK/ERK signaling and suppressed upon MEK inhibition". W Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-lb-101.
Pełny tekst źródłaWarr, Matthew R., Angie Hammond, Grace Park, Nathan Wright i James Taylor. "THU0055 TPL2 INHIBITION SUPPRESSES MEK-ERK INFLAMMATORY SIGNALING AND PROINFLAMMATORY CYTOKINE PRODUCTION IN PRIMARY HUMAN MONOCYTES". W Annual European Congress of Rheumatology, EULAR 2019, Madrid, 12–15 June 2019. BMJ Publishing Group Ltd and European League Against Rheumatism, 2019. http://dx.doi.org/10.1136/annrheumdis-2019-eular.2512.
Pełny tekst źródłaEbi, Hiromichi, Carlotta Costa, Anthony Faber, Dejan Juric, Patricia Della Pelle, Youngchul Song, Seiji Yano, Mari Mino-Kenudson, Cyril H. Benes i Jeffrey A. Engelman. "Abstract A29: PI3K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P-Rex1." W Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Oct 19-23, 2013; Boston, MA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1535-7163.targ-13-a29.
Pełny tekst źródłaRaporty organizacyjne na temat "MEK/ERK Signaling"
Dickman, Martin B., i Oded Yarden. Involvement of the PKA and MAPK signal transduction pathways in sclerotial morphogenesis in Sclerotinia sclerotiorum. United States Department of Agriculture, wrzesień 2007. http://dx.doi.org/10.32747/2007.7695861.bard.
Pełny tekst źródłaElmann, Anat, Orly Lazarov, Joel Kashman i Rivka Ofir. therapeutic potential of a desert plant and its active compounds for Alzheimer's Disease. United States Department of Agriculture, marzec 2015. http://dx.doi.org/10.32747/2015.7597913.bard.
Pełny tekst źródłaSeiler, Andreas, Aina Winsvold, Mattias Olsson, Svein Morten Eilertsen i Carolin Berndt. VILTVARNING: Test av nya tekniska åtgärder för att minska antalet viltpåkörningar på järnväg. Swedish University of Agricultural Sciences, 2022. http://dx.doi.org/10.54612/a.7pbjcv25mc.
Pełny tekst źródła