Gotowa bibliografia na temat „Medical applications potential”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Medical applications potential”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Medical applications potential"
El-Naggar, Moustafa Y., Amira M. Hamdan, Ehab A. Beltagy, Hassan A. H. Ibrahim i Mahetab M. M. Moustafa. "Endotoxin Production by Pseudomonas aeruginosa ATCC 9027 with Potential Medical Applications". Journal of Pure and Applied Microbiology 13, nr 1 (31.03.2019): 97–106. http://dx.doi.org/10.22207/jpam.13.1.10.
Pełny tekst źródłaAnil, Sukumaran. "Potential Medical Applications of Chitooligosaccharides". Polymers 14, nr 17 (29.08.2022): 3558. http://dx.doi.org/10.3390/polym14173558.
Pełny tekst źródłaAlric, Matthieu, Frédéric Chapelle, Jean-Jacques Lemaire i Grigore Gogu. "Potential applications of medical and non-medical robots for neurosurgical applications". Minimally Invasive Therapy & Allied Technologies 18, nr 4 (styczeń 2009): 193–216. http://dx.doi.org/10.1080/13645700903053584.
Pełny tekst źródłaReddy, Narendra, i Yiqi Yang. "Potential of plant proteins for medical applications". Trends in Biotechnology 29, nr 10 (październik 2011): 490–98. http://dx.doi.org/10.1016/j.tibtech.2011.05.003.
Pełny tekst źródłaGarbacz, Halina, i Krzysztof Jan Kurzydlowski. "Properties of Nanotitanium for Potential Medical Applications". Macromolecular Symposia 253, nr 1 (sierpień 2007): 128–33. http://dx.doi.org/10.1002/masy.200750719.
Pełny tekst źródłaQuan, Pham Hong, Veronica Manescu Paltanea, Gheorghe Paltanea, Iulian Antoniac i Iosif Vasile Nemoianu. "Potential of Biodegradable Magnesium Alloys for Medical Applications". Key Engineering Materials 931 (9.09.2022): 55–61. http://dx.doi.org/10.4028/p-r405h8.
Pełny tekst źródłaPiskin, E. "Potential Sorbents for Medical and Some Related Applications". International Journal of Artificial Organs 9, nr 6 (listopad 1986): 401–4. http://dx.doi.org/10.1177/039139888600900608.
Pełny tekst źródłaNoor, Hafizh Muhammad. "Potential of Carrageenans in Foods and Medical Applications". GHMJ (Global Health Management Journal) 2, nr 2 (30.06.2018): 32. http://dx.doi.org/10.35898/ghmj-22188.
Pełny tekst źródłaYasmin, Rehana, Mohsin Shah, Saeed Ahmad Khan i Roshan Ali. "Gelatin nanoparticles: a potential candidate for medical applications". Nanotechnology Reviews 6, nr 2 (1.04.2017): 191–207. http://dx.doi.org/10.1515/ntrev-2016-0009.
Pełny tekst źródłaMenz, W., i A. Guber. "Microstructure Technologies and their Potential in Medical Applications". min - Minimally Invasive Neurosurgery 37, nr 01 (wrzesień 1994): 21–27. http://dx.doi.org/10.1055/s-2008-1053444.
Pełny tekst źródłaRozprawy doktorskie na temat "Medical applications potential"
Sharp, Duncan McNeill Craig. "Bioactive scaffolds for potential bone regenerative medical applications". Thesis, University of Edinburgh, 2011. http://hdl.handle.net/1842/9520.
Pełny tekst źródłaGroombridge, Helen Jane. "Phosphorus - containing ligands with potential applications in medical imaging". Thesis, Queen Mary, University of London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.430021.
Pełny tekst źródłaHauser, Jonathon Charles. "Toxicological examination of metallic and organometallic nanoparticles for potential medical applications". Thesis, University of Bristol, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.665462.
Pełny tekst źródłaRatcliffe, Naomi. "Potential of a compact low energy proton accelertor for medical applications". Thesis, University of Huddersfield, 2014. http://eprints.hud.ac.uk/id/eprint/23711/.
Pełny tekst źródłaCheesman, Benjamin Thomas. "UV-induced film formation of functionalised siloxanes with potential for medical applications". Thesis, University of Bristol, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.559493.
Pełny tekst źródłaCassen, Mathieu. "Applications of ambulatory body surface potential mapping to the diagnosis of coronary heart disease". Thesis, University of Sussex, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366061.
Pełny tekst źródłaLiu, Chu Chuan. "Advanced Projection Ultrasound Imaging with CMOS-based Sensor Array: Development, Characterization, and Potential Medical Applications". Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/40492.
Pełny tekst źródłaPh. D.
Buthelezi, Sindisiwe. "Proteomic profiling of Nguni cattle liver tissue using gel and Gel-Free approaches: methodology development and potential applications". Master's thesis, University of Cape Town, 2013. http://hdl.handle.net/11427/3121.
Pełny tekst źródłaIncludes bibliographical references.
In South Africa, resource-poor farmers mainly depend on livestock farming for their livelihoods, with cattle production being the most important livestock sector. As a consequence of natural selection in stressful conditions, Nguni cattle have been reported to be metabolically superior to other cattle breeds under unfavourable conditions. Using proteomics, with mass spectrometry at the core of the analysis, the objective of this study was to establish a reliable set of methods for the protein profiling of Nguni cattle livers. To achieve this several alternative technologies were employed and their outcomes compared namely, two-dimensional electrophoresis, fractionation by solution phase iso-electric focusing-reversed phase chromatography (IEF-RP), offline strong cation exchange- low pH reversed phase chromatography (SCX-RP) and offline high pH reverse phase-low pH reverse phase chromatography (RP-RP). All solution based methods were coupled to a tandem mass spectrometer. Protein identification was performed using the ParagonTMAlgorithm of Protein Pilot v4.0 as well as PEAKS v6. The IEF-RP and RP-RP methods achieved similar results in terms of number of proteins identified. In addition, proteins that play a role in the urea cycle (which is believed to contribute to the Nguni cattle’s enhanced metabolic ability) were all identified with both techniques. The RP-RP method was selected as the most appropriate method for future research linked to this work and will be used in the next phase of this project, on the basis that it is easier to automate compared to the IEF-RP method. It will be used beyond the scope of this work to compare levels of expression and modification of the liver proteins and their isoforms in Nguni and Hereford cattle grown under adverse environmental conditions, in order to identify those that may contribute to enhanced liver metabolism in Nguni cattle. This will be complemented by the identification and characterisation of potential polymorphisms with in such proteins that can be used to select for this trait during breeding.
Jhala, Ekta. "Investigation of Dosimetric Characteristics and Exploration of Potential Applications of Amorphous Silicon Detector". Thesis, University of Canterbury. Physics and Astronomy, 2006. http://hdl.handle.net/10092/1350.
Pełny tekst źródłaO'Boyle, Farah. "Investigating the structural integrity of the α-3/5 conotoxin fold and its significance for potential medical applications". Thesis, Queen Mary, University of London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428335.
Pełny tekst źródłaKsiążki na temat "Medical applications potential"
International School of Radiation Damage and Protection (6th 1985 Erice, Italy). Ultrasound: Medical applications, biological effects, and hazard potential. New York: Plenum Press, 1986.
Znajdź pełny tekst źródłaE, Colon, i Visser S. L, red. Evoked potential manual: A practical guide to clinical applications. Wyd. 2. Dordrecht: Kluwer Academic Publishers, 1990.
Znajdź pełny tekst źródłaRezaul, Begg, Kamruzzaman Joarder i Sarkar Ruhul, red. Neural networks in healthcare: Potential and challenges. Hershey, PA: Idea Group Pub., 2006.
Znajdź pełny tekst źródłaAndrea, Cabibbo, Grant Richard P i Helmer-Citterich Manuela, red. The Internet for cell and molecular biologists: Current applications and future potential. Wymondham: Horizon Scientific, 2002.
Znajdź pełny tekst źródła1953-, Burkard Robert F., Eggermont Jos J i Don Manuel, red. Auditory evoked potentials: Basic principles and clinical application. Philadelphia: Lippincott Williams & Wilkins, 2007.
Znajdź pełny tekst źródła1953-, Burkard Robert F., Eggermont Jos J i Don Manuel, red. Auditory evoked potentials: Basic principles and clinical application. Philadelphia: Lippincott Williams & Wilkins, 2007.
Znajdź pełny tekst źródłaA, Boulton A., Baker Glen B. 1947- i Vanderwolf C. H, red. Neurophysiological techniques: Applications to neural systems. Clifton, N.J: Humana Press, 1990.
Znajdź pełny tekst źródłaRepacholi, M. H. Ultrasound: "Medical Applications, Biological Effects, And Hazard Potential". Springer, 2011.
Znajdź pełny tekst źródłaRepacholi, M. H., A. Rindi i Martino Gandolfo. Ultrasound: Medical Applications, Biological Effects, and Hazard Potential. Springer London, Limited, 2012.
Znajdź pełny tekst źródłaUltrasound: Medical Applications, Biological Effects, and Hazard Potential. Springer, 2011.
Znajdź pełny tekst źródłaCzęści książek na temat "Medical applications potential"
Griffith, J. R., i J. G. O’Rear. "New Fluoropolymers for Potential Medical Applications". W Advances in Biomedical Polymers, 63–67. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1829-3_7.
Pełny tekst źródłaKaragiannis, Peter. "Clinical Potential of Induced Pluripotent Stem Cells". W Medical Applications of iPS Cells, 3–12. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3672-0_1.
Pełny tekst źródłaThakral, Seema, i Naveen Kumar Thakral. "Potential Medical Applications of Fullerenes: An Overview". W Bio-Nanotechnology, 424–41. Oxford, UK: Blackwell Publishing Ltd., 2013. http://dx.doi.org/10.1002/9781118451915.ch24.
Pełny tekst źródłaSimeonova, M., M. Antcheva i R. Velichkova. "Poly(butylcyanoacrylate) Nanoparticles as Potential Drug Delivery Systems". W Advanced Biomaterials for Medical Applications, 21–34. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2908-0_3.
Pełny tekst źródłaGebelein, Charles G. "Potential Medical Applications of Nucleic Acid Analog Polymers". W Biomimetic Polymers, 269–75. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0657-3_15.
Pełny tekst źródłaSazonov, Igor, Xianghua Xie i Perumal Nithiarasu. "Efficient Geometrical Potential Force Computation for Deformable Model Segmentation". W Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging, 104–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36620-8_11.
Pełny tekst źródłaProhaska, O. J. "Potential and Limitations of Microsensors in Biomedical Applications". W The Influence of New Technology on Medical Practice, 258–63. London: Macmillan Education UK, 1988. http://dx.doi.org/10.1007/978-1-349-09609-1_39.
Pełny tekst źródłaSwartz, Harold M. "Potential Medical (Clinical) Applications of EPR: Overview & Perspectives". W In Vivo EPR (ESR), 599–621. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0061-2_22.
Pełny tekst źródłaOsman, Eman. "Nanofinished Medical Textiles and Their Potential Impact to Health and Environment". W Nanoparticles and their Biomedical Applications, 127–45. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0391-7_5.
Pełny tekst źródłaSharma, Nikunj, Anwesha Khanra i Monika Prakash Rai. "Potential Applications of Antioxidants from Algae in Human Health". W Oxidative Stress: Diagnostic Methods and Applications in Medical Science, 153–68. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4711-4_9.
Pełny tekst źródłaStreszczenia konferencji na temat "Medical applications potential"
Kalender, Willi A., Klaus Engelke i Stefan Schaller. "Spiral CT: medical use and potential industrial applications". W Optical Science, Engineering and Instrumentation '97, redaktor Ulrich Bonse. SPIE, 1997. http://dx.doi.org/10.1117/12.279357.
Pełny tekst źródłaEsserman, Laura, i Steven Conradson. "Potential Medical Applications of UV Free-Electron Lasers". W Free-Electron Laser Applications in the Ultraviolet. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/fel.1988.fc6.
Pełny tekst źródłaLaamanen, C., i R. J. LeClair. "Potential use of a single scatter model in breast CBCT applications". W SPIE Medical Imaging, redaktorzy Bruce R. Whiting i Christoph Hoeschen. SPIE, 2014. http://dx.doi.org/10.1117/12.2043629.
Pełny tekst źródłaBräuer-Krisch, E., A. Rosenfeld, M. Lerch, M. Petasecca, M. Akselrod, J. Sykora, J. Bartz i in. "Potential High Resolution Dosimeters For MRT". W 6TH INTERNATIONAL CONFERENCE ON MEDICAL APPLICATIONS OF SYNCHROTRON RADIATION. AIP, 2010. http://dx.doi.org/10.1063/1.3478205.
Pełny tekst źródłaWang, Lei, Walter M. Gibson i Carolyn A. MacDonald. "Potential of polycapillary optics for hard x-ray medical imaging applications". W SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, redaktorzy Carolyn A. MacDonald, Kenneth A. Goldberg, Juan R. Maldonado, Huaiyu H. Chen-Mayer i Stephen P. Vernon. SPIE, 1999. http://dx.doi.org/10.1117/12.371107.
Pełny tekst źródłaGioia, Federica, Alejandro Luis Callara, Tobias Bruderer, Matyas Ripszam, Fabio Di Francesco, Enzo Pasquale Scilingo i Alberto Greco. "Potential physiological stress biomarkers in human sweat". W 2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA). IEEE, 2022. http://dx.doi.org/10.1109/memea54994.2022.9856534.
Pełny tekst źródłaDas, Mini, Bigyan Kandel, Chan Soo Park i Zhihua Liang. "Energy calibration of photon counting detectors using x-ray tube potential as a reference for material decomposition applications". W SPIE Medical Imaging, redaktorzy Christoph Hoeschen, Despina Kontos i Thomas G. Flohr. SPIE, 2015. http://dx.doi.org/10.1117/12.2082979.
Pełny tekst źródłaKadim, H. J., i C. M. Wood. "Prediction of Protein Conformation with Potential Applications to Medical Diagnosis and Defence". W 2007 ECSIS Symposium on Bio-inspired, Learning, and Intelligent Systems for Security (BLISS 2007). IEEE, 2007. http://dx.doi.org/10.1109/bliss.2007.16.
Pełny tekst źródłaTrue, Isaac, i Grenville Armitage. "Potential redundant link fail-over strategies for uptime-sensitive medical telemetry applications". W 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom). IEEE, 2016. http://dx.doi.org/10.1109/healthcom.2016.7749441.
Pełny tekst źródłaIavicoli, I., i V. Leso. "1648b Nanotechnology in medical fields: potential applications, toxicological implications, and occupational risks". W 32nd Triennial Congress of the International Commission on Occupational Health (ICOH), Dublin, Ireland, 29th April to 4th May 2018. BMJ Publishing Group Ltd, 2018. http://dx.doi.org/10.1136/oemed-2018-icohabstracts.932.
Pełny tekst źródłaRaporty organizacyjne na temat "Medical applications potential"
Spanner, G. E., i G. L. Wilfert. Potential industrial applications for composite phase-change materials as thermal energy storage media. Office of Scientific and Technical Information (OSTI), lipiec 1989. http://dx.doi.org/10.2172/5861369.
Pełny tekst źródłaOleksiuk, Vasyl P., i Olesia R. Oleksiuk. Exploring the potential of augmented reality for teaching school computer science. [б. в.], listopad 2020. http://dx.doi.org/10.31812/123456789/4404.
Pełny tekst źródłaCuesta, Ana, Lucia Delgado, Sebastián Gallegos, Benjamin Roseth i Mario Sánchez. Increasing the Take-up of Public Health Services: An Experiment on Nudges and Digital Tools in Uruguay. Inter-American Development Bank, lipiec 2021. http://dx.doi.org/10.18235/0003397.
Pełny tekst źródłaNiles, John S., i J. M. Pogodzinski. Steps to Supplement Park-and-Ride Public Transit Access with Ride-and-Ride Shuttles. Mineta Transportation Institute, lipiec 2021. http://dx.doi.org/10.31979/mti.2021.1950.
Pełny tekst źródłaRathinam, Francis, P. Thissen i M. Gaarder. Using big data for impact evaluations. Centre of Excellence for Development Impact and Learning (CEDIL), luty 2021. http://dx.doi.org/10.51744/cmb2.
Pełny tekst źródłaRudd, Ian. Leveraging Artificial Intelligence and Robotics to Improve Mental Health. Intellectual Archive, lipiec 2022. http://dx.doi.org/10.32370/iaj.2710.
Pełny tekst źródłaWarren, Nancy, Pia Mingkwan, Caroline Kery, Meagan Meekins, Thomas Bukowski i Laura Nyblade. Identifying and Classifying COVID-19 Stigma on Social Media. RTI Press, maj 2023. http://dx.doi.org/10.3768/rtipress.2023.op.0087.2305.
Pełny tekst źródłaTokarieva, Anastasiia V., Nataliia P. Volkova, Inesa V. Harkusha i Vladimir N. Soloviev. Educational digital games: models and implementation. [б. в.], wrzesień 2019. http://dx.doi.org/10.31812/123456789/3242.
Pełny tekst źródłaBorrett, Veronica, Melissa Hanham, Gunnar Jeremias, Jonathan Forman, James Revill, John Borrie, Crister Åstot i in. Science and Technology for WMD Compliance Monitoring and Investigations. The United Nations Institute for Disarmament Research, grudzień 2020. http://dx.doi.org/10.37559/wmd/20/wmdce11.
Pełny tekst źródłaCytryn, Eddie, Mark R. Liles i Omer Frenkel. Mining multidrug-resistant desert soil bacteria for biocontrol activity and biologically-active compounds. United States Department of Agriculture, styczeń 2014. http://dx.doi.org/10.32747/2014.7598174.bard.
Pełny tekst źródła