Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Mechanics of rigid bodies.

Artykuły w czasopismach na temat „Mechanics of rigid bodies”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Mechanics of rigid bodies”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Sławianowski, Jan Jerzy, Vasyl Kovalchuk, Barbara Gołubowska, Agnieszka Martens i Ewa Eliza Rożko. "Quantized mechanics of affinely rigid bodies". Mathematical Methods in the Applied Sciences 40, nr 18 (19.07.2017): 6900–6918. http://dx.doi.org/10.1002/mma.4501.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Steigmann, David J. "On pseudo-rigid bodies". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 462, nr 2066 (13.12.2005): 559–65. http://dx.doi.org/10.1098/rspa.2005.1573.

Pełny tekst źródła
Streszczenie:
The concept of the pseudo-rigid body , a model of hypothetical bodies constrained to deform homogeneously, is discussed critically. An analysis is given of a recent attempt, published in this journal, to establish this model on the basis of continuum mechanics.
Style APA, Harvard, Vancouver, ISO itp.
3

Grekova, E. "Moment Interactions of Rigid Bodies". ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 80, S2 (2000): 347–48. http://dx.doi.org/10.1002/zamm.20000801445.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Marquina, J. E., M. L. Marquina, V. Marquina i J. J. Hernández-Gómez. "Leonhard Euler and the mechanics of rigid bodies". European Journal of Physics 38, nr 1 (21.10.2016): 015001. http://dx.doi.org/10.1088/0143-0807/38/1/015001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Sideris, Petros, i Andre Filiatrault. "Seismic Response of Squat Rigid Bodies on Inclined Planes with Rigid Boundaries". Journal of Engineering Mechanics 140, nr 1 (styczeń 2014): 149–58. http://dx.doi.org/10.1061/(asce)em.1943-7889.0000658.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Iwai, Toshihiro. "The geometry and mechanics of generalized pseudo-rigid bodies". Journal of Physics A: Mathematical and Theoretical 43, nr 9 (15.02.2010): 095206. http://dx.doi.org/10.1088/1751-8113/43/9/095206.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Maggiorini, Dario, Laura Anna Ripamonti i Federico Sauro. "Unifying Rigid and Soft Bodies Representation: The Sulfur Physics Engine". International Journal of Computer Games Technology 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/485019.

Pełny tekst źródła
Streszczenie:
Video games are (also) real-time interactive graphic simulations: hence, providing a convincing physics simulation for each specific game environment is of paramount importance in the process of achieving a satisfying player experience. While the existing game engines appropriately address many aspects of physics simulation, some others are still in need of improvements. In particular, several specific physics properties of bodies not usually involved in the main game mechanics (e.g., properties useful to represent systems composed by soft bodies), are often poorly rendered by general-purpose engines. This issue may limit game designers when imagining innovative and compelling video games and game mechanics. For this reason, we dug into the problem of appropriately representing soft bodies. Subsequently, we have extended the approach developed for soft bodies to rigid ones, proposing and developing a unified approach in a game engine: Sulfur. To test the engine, we have also designed and developed “Escape from Quaoar,” a prototypal video game whose main game mechanic exploits an elastic rope, and a level editor for the game.
Style APA, Harvard, Vancouver, ISO itp.
8

Federico, Salvatore, i Mawafag Alhasadi. "Inverse dynamics in rigid body mechanics". Theoretical and Applied Mechanics, nr 00 (2022): 11. http://dx.doi.org/10.2298/tam221109011f.

Pełny tekst źródła
Streszczenie:
Inverse Dynamics is used to calculate the forces and moments in the joints of multibody systems investigated in fields such as Biomechanics or Robotics. In a didactic spirit, this paper begins with an overview of the derivations of the kinematical and dynamical equations of rigid bodies from the point of view of modern Continuum Mechanics. Then, it introduces a matrix formulation for the solution of Inverse Dynamics problems and, finally, reports a simple two-dimensional example of application to a problem in Biomechanics.
Style APA, Harvard, Vancouver, ISO itp.
9

White, M. W. D., i G. R. Heppler. "Vibration Modes and Frequencies of Timoshenko Beams With Attached Rigid Bodies". Journal of Applied Mechanics 62, nr 1 (1.03.1995): 193–99. http://dx.doi.org/10.1115/1.2895902.

Pełny tekst źródła
Streszczenie:
The equations of motion and boundary conditions for a free-free Timoshenko beam with rigid bodies attached at the endpoints are derived. The natural boundary conditions, for an end that has an attached rigid body, that include the effects of the body mass, first moment of mass, and moment of inertia are included. The frequency equation for a free-free Timoshenko beam with rigid bodies attached at its ends which includes all the effects mentioned above is presented and given in terms of the fundamental frequency equations for Timoshenko beams that have no attached rigid bodies. It is shown how any support / rigid-body condition may be easily obtained by inspection from the reported frequency equation. The mode shapes and the orthogonality condition, which include the contribution of the rigid-body masses, first moments, and moments of inertia, are also developed. Finally, the effect of the first moment of the attached rigid bodies is considered in an illustrative example.
Style APA, Harvard, Vancouver, ISO itp.
10

Zabuga, A. G. "Modeling the Collision with Friction of Rigid Bodies". International Applied Mechanics 52, nr 5 (wrzesień 2016): 557–62. http://dx.doi.org/10.1007/s10778-016-0776-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Palffy-Muhoray, Peter, Epifanio G. Virga, Mark Wilkinson i Xiaoyu Zheng. "On a paradox in the impact dynamics of smooth rigid bodies". Mathematics and Mechanics of Solids 24, nr 3 (31.01.2018): 573–97. http://dx.doi.org/10.1177/1081286517751262.

Pełny tekst źródła
Streszczenie:
Paradoxes in the impact dynamics of rigid bodies are known to arise in the presence of friction. We show here that, on specific occasions, in the absence of friction, the conservation laws of classical mechanics are also incompatible with the collisions of smooth, strictly convex rigid bodies. Under the assumption that the impact impulse is along the normal direction to the surface at the contact point, two convex rigid bodies that are well separated can come into contact, and then interpenetrate each other. This paradox can be demonstrated in both 2D and 3D when the collisions are tangential, in which case no momentum or energy transfer between the two bodies is possible. The postcollisional interpenetration can be realized through the contact points or through neighboring points only. The penetration distance is shown to be [Formula: see text]. The conclusion is that rigid-body dynamics is not compatible with the conservation laws of classical mechanics.
Style APA, Harvard, Vancouver, ISO itp.
12

Li, Li, i J. Kim Vandiver. "Wave Propagation in Strings with Rigid Bodies". Journal of Vibration and Acoustics 117, nr 4 (1.10.1995): 493–500. http://dx.doi.org/10.1115/1.2874489.

Pełny tekst źródła
Streszczenie:
This paper studies wave propagation in strings with rigid bodies using the method of transfer matrices. The transmission property of a single rigid body is investigated. It is found that when the size of a rigid body is included, a symmetrically defined rigid body will transmit wave energy completely at a non-zero frequency defined by the tension, the length of the body, the mass of the string replaced by the body, and the mass of the body. Using the concept of impedance matching, the effect of a discontinuity on wave transmission in an infinite string system is revealed. The same idea is extended to the study of wave propagation in a string with multiple, equally-spaced rigid bodies (a periodic structure). The input impedance of such a system and the conditions of complete transmission are expressed in terms of the transfer matrix. The input impedance is used to identify the frequencies at which there is complete wave transmission. These frequencies are related to the natural frequencies of the corresponding finite system and constitute the so-called propagation zones. The results of this work may be applied to the propagation of vibration in complex cable systems such as oceanographic moorings.
Style APA, Harvard, Vancouver, ISO itp.
13

Cohen, H., i G. P. Mac Sithigh. "Impulsive Motions of Elastic Pseudo-Rigid Bodies". Journal of Applied Mechanics 58, nr 4 (1.12.1991): 1042–48. http://dx.doi.org/10.1115/1.2897680.

Pełny tekst źródła
Streszczenie:
We develop the formalism for treating impact problems in the theory of pseudorigid bodies developed by Cohen and Muncaster. Our treatment is general enough to include the effect of kinematical constraints.
Style APA, Harvard, Vancouver, ISO itp.
14

Solodovnikov, V. N. "Theory of normal contact of rigid bodies". Journal of Applied Mechanics and Technical Physics 41, nr 1 (styczeń 2000): 115–19. http://dx.doi.org/10.1007/bf02465245.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Cohen, H., i G. P. Mac Sithigh. "Plane motions of elastic pseudo-rigid bodies". Journal of Elasticity 21, nr 2 (kwiecień 1989): 193–226. http://dx.doi.org/10.1007/bf00040895.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

O’Reilly, O. M. "On the Computation of Relative Rotations and Geometric Phases in the Motions of Rigid Bodies". Journal of Applied Mechanics 64, nr 4 (1.12.1997): 969–74. http://dx.doi.org/10.1115/1.2789008.

Pełny tekst źródła
Streszczenie:
In this paper, expressions are established for certain relative rotations which arise in motions of rigid bodies. A comparison of these results with existing relations for geometric phases in the motions of rigid bodies provides alternative expressions of, and computational methods for, the relative rotation. The computational aspects are illustrated using several examples from rigid-body dynamics: namely, the moment-free motion of a rigid body, rolling disks, and sliding disks.
Style APA, Harvard, Vancouver, ISO itp.
17

Pfister, F. "A dynamical formalism for unrooted systems of rigid bodies". Acta Mechanica 112, nr 1-4 (marzec 1995): 203–21. http://dx.doi.org/10.1007/bf01177489.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Brach, Raymond M. "Rigid Body Collisions". Journal of Applied Mechanics 56, nr 1 (1.03.1989): 133–38. http://dx.doi.org/10.1115/1.3176033.

Pełny tekst źródła
Streszczenie:
A general approach is presented for solving the problem of the collision of two rigid bodies at a point. The approach overcomes the difficulties encountered by others on the treatment of contact velocity reversals and negative energy losses. A classical problem is solved; the initial velocities are presumed known and the final velocities unknown. The interaction process between the two bodies is modeled using two coefficients. These are the classical coefficient of restitution, e, and the ratio, μ, of tangential to normal impulses. The latter quantity can be a coefficient of friction as a special case. The paper reveals that these coefficients have a much broader intepretation than previously recognized in the solution of collision problems. The appropriate choice of values for μ is related to the energy loss of the collision. It is shown that μ is bounded by values which correspond to no sliding at separation and conservation of energy. Another bound on μ combined with limits on the coefficient e, provides an overall bound on the energy loss of a collision. Examples from existing mechanics literature are solved to illustrate the significance of the coefficients and their relationship to the energy loss of collisions.
Style APA, Harvard, Vancouver, ISO itp.
19

Hongbo, Li. "On unilaterally constrained motions of rigid bodies systems". Applied Mathematics and Mechanics 17, nr 10 (październik 1996): 939–44. http://dx.doi.org/10.1007/bf00147131.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Babich, S. Yu, A. N. Guz' i V. B. Rudnitskii. "Contact problems for elastic bodies with initial stresses (rigid punches)". Soviet Applied Mechanics 25, nr 8 (sierpień 1989): 735–48. http://dx.doi.org/10.1007/bf00887636.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Kravets, V. V., i E. P. Kryshko. "Spatial motion of rigid bodies connected by an elastic rod". Soviet Applied Mechanics 24, nr 6 (czerwiec 1988): 630–33. http://dx.doi.org/10.1007/bf01890825.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Mentrasti, L. "Paradoxes in Rigid-Body Kinematics of Structures". Journal of Applied Mechanics 65, nr 1 (1.03.1998): 218–22. http://dx.doi.org/10.1115/1.2789029.

Pełny tekst źródła
Streszczenie:
The paper discusses two paradoxes appearing in the kinematic analysis of interconnected rigid bodies: there are structures that formally satisfy the classical First and Second Theorem on kinematic chains, but do not have any motion. This can arise when some centers of instantaneous rotation (CIR) relevant to two bodies coincide with each other (first kind paradox) or when the CIRs relevant to three bodies lie on a straight line (second kind paradox). In these cases two sets of new theorems on the CIRs can be applied, pointing out sufficient conditions for the nonexistence of a rigid-body motion. The question is clarified by applying the presented theory to several examples.
Style APA, Harvard, Vancouver, ISO itp.
23

Fosdick, Roger, i Gianni Royer-Carfagni. "Stress as a Constraint Reaction in Rigid Bodies". Journal of Elasticity 74, nr 3 (marzec 2004): 265–76. http://dx.doi.org/10.1023/b:elas.0000039619.96530.04.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Cohen, Avraham, i Moshe Shoham. "Hyper Dual Quaternions representation of rigid bodies kinematics". Mechanism and Machine Theory 150 (sierpień 2020): 103861. http://dx.doi.org/10.1016/j.mechmachtheory.2020.103861.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

MoradiMaryamnegari, H., i A. M. Khoshnood. "Robust adaptive vibration control of an underactuated flexible spacecraft". Journal of Vibration and Control 25, nr 4 (30.09.2018): 834–50. http://dx.doi.org/10.1177/1077546318802431.

Pełny tekst źródła
Streszczenie:
Designing a controller for multi-body systems including flexible and rigid bodies has always been one of the major engineering challenges. Equations of motion of these systems comprise extremely nonlinear and coupled terms. Vibrations of flexible bodies affect sensors of rigid bodies and might make the system unstable. Introducing a new control strategy for designing control systems which do not require the rigid–flexible coupling model and can dwindle vibrations without sensors or actuators on flexible bodies is the purpose of this paper. In this study, a spacecraft comprising a rigid body and a flexible panel is used as the case study, and its equations of motion are extracted using Lagrange equations in terms of quasi-coordinates. For oscillations on a rigid body to be eliminated, a frequency estimation algorithm and an adaptive filtering are used. A controller is designed based on the rigid model of the system, and then robust stability conditions for the rigid–flexible system are obtained. The conditions are also developed for the spacecraft with more than one active frequency. Finally, the robust adaptive vibration control system is simulated in the presence of resonance. Simulations’ results indicate the advantage of the control method even when several active frequencies simultaneously resonate the dynamics system.
Style APA, Harvard, Vancouver, ISO itp.
26

Montanaro, A. "Global Equivalence for Rigid Heat-Conducting Bodies". Mathematics and Mechanics of Solids 6, nr 4 (sierpień 2001): 423–36. http://dx.doi.org/10.1177/108128650100600404.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Hesch, Christian, i Peter Betsch. "Continuum Mechanical Considerations for Rigid Bodies and Fluid-Structure Interaction Problems". Archive of Mechanical Engineering 60, nr 1 (1.03.2013): 95–108. http://dx.doi.org/10.2478/meceng-2013-0006.

Pełny tekst źródła
Streszczenie:
The present work deals with continuum mechanical considerations for deformable and rigid solids as well as for fluids. A common finite element framework is used to approximate all systems under considerations. In particular, we present a standard displacement based formulation for the deformable solids and make use of this framework for the transition of the solid to a rigid body in the limit of infinite stiffness. At last, we demonstrate how to immerse a discretized solid into a fluid for fluid-structure interaction problems.
Style APA, Harvard, Vancouver, ISO itp.
28

de Saxcé, Géry, i Claude Vallée. "Affine tensors in mechanics of freely falling particles and rigid bodies". Mathematics and Mechanics of Solids 17, nr 4 (4.10.2011): 413–30. http://dx.doi.org/10.1177/1081286511421339.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Kayumov, O. R. "Parametric controllability of certain systems of rigid bodies". Journal of Applied Mathematics and Mechanics 70, nr 4 (styczeń 2006): 527–48. http://dx.doi.org/10.1016/j.jappmathmech.2006.09.017.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Lapin, V. N. "Stability of the Couette flow of ideal rigid-plastic bodies". Moscow University Mechanics Bulletin 66, nr 1 (luty 2011): 1–7. http://dx.doi.org/10.3103/s0027133011010018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Kovalev, Aleksandr Mikhailovich, I. A. Bolgrabskaya, D. A. Chebanov i V. F. Shcherbak. "Damping of Forced Vibrations in Systems of Connected Rigid Bodies". International Applied Mechanics 39, nr 3 (marzec 2003): 343–49. http://dx.doi.org/10.1023/a:1024430806596.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Shenton, Harry W., i Nicholas P. Jones. "Base Excitation of Rigid Bodies. II: Periodic Slide‐Rock Response". Journal of Engineering Mechanics 117, nr 10 (październik 1991): 2307–28. http://dx.doi.org/10.1061/(asce)0733-9399(1991)117:10(2307).

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Kravets, V. V., i T. V. Kravets. "On the nonlinear dynamics of elastically interacting asymmetric rigid bodies". International Applied Mechanics 42, nr 1 (styczeń 2006): 110–14. http://dx.doi.org/10.1007/s10778-006-0065-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Zakrzhevskii, A. E. "Program motion of systems of rigid and elastic bodies (review)". International Applied Mechanics 29, nr 6 (czerwiec 1993): 413–30. http://dx.doi.org/10.1007/bf00846903.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

TAO, JIN-HE, i CHONG-MING XU. "A MODEL OF 1PN QUASI-RIGID BODY FOR ROTATION OF CELESTIAL BODIES". International Journal of Modern Physics D 12, nr 05 (maj 2003): 811–24. http://dx.doi.org/10.1142/s0218271803003311.

Pełny tekst źródła
Streszczenie:
Applying the Damour–Soffel–Xu framework of general-relativistic celestial mechanics, the theory of relativistic rigid body presented by Thorne and Gürsel is extended and developed in this paper. We successfully construct a quasi-rigid body model in the full post-Newtonian framework for the first time. This model has some simple properties in a similar way to the Newtonian rigid body, and it could be applied in geodynamics and astronomy, for example, to solve problems on rotation or precession of celestial bodies when relativistic effects are not negligible.
Style APA, Harvard, Vancouver, ISO itp.
36

Shabana, A. A. "Finite Element Incremental Approach and Exact Rigid Body Inertia". Journal of Mechanical Design 118, nr 2 (1.06.1996): 171–78. http://dx.doi.org/10.1115/1.2826866.

Pełny tekst źródła
Streszczenie:
In the dynamics of multibody systems that consist of interconnected rigid and deformable bodies, it is desirable to have a formulation that preserves the exactness of the rigid body inertia. As demonstrated in this paper, the incremental finite element approach, which is often used to solve large rotation problems, does not lead to the exact inertia of simple structures when they rotate as rigid bodies. Nonetheless, the exact inertia properties, such as the mass moments of inertia and the moments of mass, of the rigid bodies can be obtained using the finite element shape functions that describe large rigid body translations by introducing an intermediate element coordinate system. The results of application of the parallel axis theorem can be obtained using the finite element shape functions by simply changing the element nodal coordinates. As demonstrated in this investigation, the exact rigid body inertia properties in case of rigid body rotations can be obtained using the shape function if the nodal coordinates are defined using trigonometric functions. The analysis presented in this paper also demonstrates that a simple expression for the kinetic energy can be obtained for flexible bodies that undergo large displacements without the need for interpolation of large rotation coordinates.
Style APA, Harvard, Vancouver, ISO itp.
37

Pfister, Jens, i Peter Eberhard. "Frictional contact of flexible and rigid bodies". Granular Matter 4, nr 1 (luty 2002): 25–36. http://dx.doi.org/10.1007/s10035-001-0099-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Zhogoleva, Nadiya, i Iryna Dmytryshyn. "Forced synchronization of rigid bodies angular velocities". Proceedings of the Institute of Applied Mathematics and Mechanics NAS of Ukraine 35 (25.10.2021): 27–36. http://dx.doi.org/10.37069/10.37069/1683-4720-2021-35-3.

Pełny tekst źródła
Streszczenie:
The problem of synchronization on incomplete information on a state of system is considered. In control theory, one of the ways to solve the problem of incompleteness of the measured information is to obtain a vector estimate state by the values of outputs with the help of an observer -- a special dynamic system, the state of which approaches the initial trajectory. The main problem in constructing an observer is therefore, to provide a exponential dynamics of observation error reduction. Assume that a solution in the form of feedback $ u (x) $ is found for the problem of synchronization of trajectories and estimate $ \hat x $ is obtained with the help of an observer. The question arises whether thus obtained control law in the form of feedback $ u (\hat x) $ solve the original problem. For linear stationary systems, the answer to this question is positive (the separation principle): if for of a linear stationary system an exponential observer is constructed and a linear feedback is found, globally asymptotically stabilizing a given equilibrium position at a known state vector -- then with the appropriate feedback on the estimate state vector global asymptotic stability of the equilibrium position stored. For nonlinear systems in the general case the answer to this question is negative: there are examples of nonlinear systems to which the separation principle is unsuitable. The reason for this is possible phenomenon of unlimited growth of system solutions with control $ u(\hat x) $ for a finite time before the observer estimates error of the state will be reduced to zero. To construct the laws of synchronization, in contrast to the general approach, we use the method of invariant relations developed in analytical mechanics, which is designed to find partial solutions (dependences between variables) in problems of dynamics of a rigid body with a fixed point. Modification of this method to the problems of control theory allows to synthesize a manifold in the space of an extended system, which avoids possible unlimited growth of solutions and provides controlled dynamics for trajectory deviation.
Style APA, Harvard, Vancouver, ISO itp.
39

Sankar, N., V. Kumar i Xiaoping Yun. "Velocity and Acceleration Analysis of Contact Between Three-Dimensional Rigid Bodies". Journal of Applied Mechanics 63, nr 4 (1.12.1996): 974–84. http://dx.doi.org/10.1115/1.2787255.

Pełny tekst źródła
Streszczenie:
During manipulation and locomotion tasks encountered in robotics, it is often necessary to control the relative motion between two contacting rigid bodies. In this paper we obtain the equations relating the motion of the contact points on the pair of contacting bodies to the rigid-body motions of the two bodies. The equations are developed up to the second order. The velocity and acceleration constraints for contact, for rolling, and for pure rolling are derived. These equations depend on the local surface properties of each contacting body. Several examples are presented to illustrate the nature of the equations.
Style APA, Harvard, Vancouver, ISO itp.
40

Stronge, W. J. "Swerve During Three-Dimensional Impact of Rough Rigid Bodies". Journal of Applied Mechanics 61, nr 3 (1.09.1994): 605–11. http://dx.doi.org/10.1115/1.2901502.

Pełny tekst źródła
Streszczenie:
For collisions between rough bodies, dry friction can be represented by Coulomb’s law; this relates the normal and tangential components of contact force by a coefficient of limiting friction if the contact is sliding. The friction force acts in a direction opposed to sliding. For a collision with planar changes in velocity, sliding is in either one direction or the other; the direction can reverse before separation only if the impact configuration is eccentric or noncollinear and the initial velocity of sliding is small. In general, however, friction results in nonplanar changes in velocity; for free bodies the velocity changes are three-dimensional or nonplanar unless the initial sliding velocity lies in the same plane as two principal axes of inertia for each body. Nonplanar velocity changes give a direction of sliding that continually changes or swerves during an initial phase of contact in an eccentric impact configuration. The present paper obtains changes in relative velocity during “rigid” body collisions as a function of impulse Pn of the normal component of reaction force. The method of resolving changes in relative velocity as a function of impulse is demonstrated by obtaining the solution for a spherical pendulum colliding with a rough half-space. The solution depends on two independent material parameters—the coefficient of friction and an energetic coefficient of restitution.
Style APA, Harvard, Vancouver, ISO itp.
41

Franchi, C. G. "A highly redundant coordinate formulation for constrained rigid bodies". Meccanica 30, nr 1 (luty 1995): 17–35. http://dx.doi.org/10.1007/bf00987123.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Cohen, H., i G. P. Macsithigh. "Plane motions of elastic pseudo-rigid bodies: an example". Journal of Elasticity 32, nr 1 (lipiec 1993): 51–59. http://dx.doi.org/10.1007/bf00042248.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Khromov, A. I., E. P. Kocherov i A. L. Grigor’eva. "Strain states and fracture conditions for rigid-plastic bodies". Doklady Physics 52, nr 4 (kwiecień 2007): 228–32. http://dx.doi.org/10.1134/s1028335807040143.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Bukhan’ko, A. A., A. L. Grigor’eva, E. P. Kocherov i A. I. Khromov. "Strain-energy failure criterion for rigid-plastic bodies". Mechanics of Solids 44, nr 6 (grudzień 2009): 959–66. http://dx.doi.org/10.3103/s0025654409060132.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Shamolin, Maxim V. "Cases of Integrability Which Correspond to the Motion of a Pendulum in the Three-dimensional Space". WSEAS TRANSACTIONS ON APPLIED AND THEORETICAL MECHANICS 16 (10.08.2021): 73–84. http://dx.doi.org/10.37394/232011.2021.16.8.

Pełny tekst źródła
Streszczenie:
We systematize some results on the study of the equations of spatial motion of dynamically symmetric fixed rigid bodies–pendulums located in a nonconservative force fields. The form of these equations is taken from the dynamics of real fixed rigid bodies placed in a homogeneous flow of a medium. In parallel, we study the problem of a spatial motion of a free rigid body also located in a similar force fields. Herewith, this free rigid body is influenced by a nonconservative tracing force; under action of this force, either the magnitude of the velocity of some characteristic point of the body remains constant, which means that the system possesses a nonintegrable servo constraint, or the center of mass of the body moves rectilinearly and uniformly; this means that there exists a nonconservative couple of forces in the system
Style APA, Harvard, Vancouver, ISO itp.
46

Papusha, A. N. "Free motion of a system of rigid bodies with dual-spin rotation". Soviet Applied Mechanics 21, nr 8 (sierpień 1985): 816–22. http://dx.doi.org/10.1007/bf00887635.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Kubenko, V. D., i V. V. Gavrilenko. "Axisymmetric problem of the penetration of rigid bodies into a compressible liquid". Soviet Applied Mechanics 23, nr 2 (luty 1987): 152–58. http://dx.doi.org/10.1007/bf00889010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Sharekh, M. S. Abu, S. K. Pathak, G. L. Asawa i P. D. Porey. "Turbulent Boundary Layer over Symmetric Bodies with Rigid and Flexible Surfaces". Journal of Engineering Mechanics 126, nr 4 (kwiecień 2000): 422–31. http://dx.doi.org/10.1061/(asce)0733-9399(2000)126:4(422).

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Vasilenko, A. T., i I. G. Emel'yanov. "Contact interaction of anisotropic cylindrical shells with elastic and rigid bodies". International Applied Mechanics 29, nr 3 (marzec 1993): 200–203. http://dx.doi.org/10.1007/bf00846997.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Nesteruk, Igor G. "Rigid Bodies without Boundary-Layer Separation". International Journal of Fluid Mechanics Research 41, nr 3 (2014): 260–81. http://dx.doi.org/10.1615/interjfluidmechres.v41.i3.50.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii