Gotowa bibliografia na temat „Mechanical property”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Mechanical property”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Mechanical property"
Schelleng, Robert D. "Mechanical Property Control of Mechanically Alloyed Aluminum". JOM 41, nr 1 (styczeń 1989): 32–35. http://dx.doi.org/10.1007/bf03220800.
Pełny tekst źródłaNakazono, Kazuko, i Toshikazu Takata. "Mechanical Chirality of Rotaxanes: Synthesis and Function". Symmetry 12, nr 1 (10.01.2020): 144. http://dx.doi.org/10.3390/sym12010144.
Pełny tekst źródłaLiu, Peng, Zhi Wu Yu, Ling Kun Chen i Zhu Ding. "Mechanical Property of Phosphoaluminate Cement". Advanced Materials Research 150-151 (październik 2010): 1754–57. http://dx.doi.org/10.4028/www.scientific.net/amr.150-151.1754.
Pełny tekst źródłaWAKI, Hiroyuki. "Testing Method for Mechanical Property :". Journal of The Surface Finishing Society of Japan 64, nr 5 (2013): 280–84. http://dx.doi.org/10.4139/sfj.64.280.
Pełny tekst źródłaSteen, M., i C. Filiou. "Mechanical Property Scatter in CFCCs". Journal of Engineering for Gas Turbines and Power 122, nr 1 (20.10.1999): 69–72. http://dx.doi.org/10.1115/1.483177.
Pełny tekst źródłaYang, Wei, Liang Lifu i Liang Zhongwei. "On mechanical property of constraint". Applied Mathematics and Mechanics 16, nr 11 (listopad 1995): 1095–103. http://dx.doi.org/10.1007/bf02484376.
Pełny tekst źródłaTao, Jun Lin, Wei Fang Xu, Gang Cheng, Xi Cheng Huang, Fang Ju Zhang i Xiao Xia Pan. "Dynamic Mechanical Property of a Steel". Advanced Materials Research 197-198 (luty 2011): 1681–85. http://dx.doi.org/10.4028/www.scientific.net/amr.197-198.1681.
Pełny tekst źródłaONITA, Takafumi, Tsuyoshi NISHIWAKI, Zen-ichiro MAEKAWA i Hiroyuki HAMADA. "Mechanical Property of Matrix Hybrid Laminates." Journal of the Society of Materials Science, Japan 50, nr 10 (2001): 1146–51. http://dx.doi.org/10.2472/jsms.50.1146.
Pełny tekst źródłaNakagawa, Yuji. "MECHANICAL PROPERTY OF THE HUMAN URETER". Japanese Journal of Urology 80, nr 10 (1989): 1481–88. http://dx.doi.org/10.5980/jpnjurol1989.80.1481.
Pełny tekst źródłaNAGASHIMA, Nobuo. "Multi-scale Mechanical Property Strength Analysis". Transactions of Japan Society of Spring Engineers 2021, nr 66 (31.03.2021): 13–21. http://dx.doi.org/10.5346/trbane.2021.13.
Pełny tekst źródłaRozprawy doktorskie na temat "Mechanical property"
Janakiraman, Balasubramanian. "Mechanical property measurement by indentation techniques". Texas A&M University, 2004. http://hdl.handle.net/1969.1/3111.
Pełny tekst źródłaBargo, Johnny E. "Mechanical property characterization of recycled thermoplastics". Morgantown, W. Va. : [West Virginia University Libraries], 2000. http://etd.wvu.edu/templates/showETD.cfm?recnum=1473.
Pełny tekst źródłaTitle from document title page. Document formatted into pages; contains xvii, 143 p. : ill. (some col.) Includes abstract. Includes bibliographical references (p. 104-105).
Hill, Jeremy Lee. "Mechanical property determination for flexible material systems". Diss., Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/54993.
Pełny tekst źródłaWright, Andrew M. (Andrew Milton) 1976. "Real-time mass property estimation". Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/88852.
Pełny tekst źródłaAlifierakis, Michail. "Mechanical Property Modeling of Graphene Filled Elastomeric Composites". Thesis, Princeton University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10823814.
Pełny tekst źródłaAccessing improved elastomeric composites filled with functionalized graphene sheets (FGSs) requires an understanding of how the FGSs aggregate and how the position of FGSs affects the mechanical properties of the final composite material. In this thesis, I study both effects by devising models for 2-D particles in the 10s of microns scale and comparing my results with experiments. These models enable an understanding of the effect of the particles in a level that is hard to be studied experimentally or by molecular models. In the first part, I present a model for aggregation of 2-D particles and apply it to study the aggregation of FGS in water with varying concentrations of sodium dodecyl sulfate (SDS). The model produces clusters of similar sizes and structures as a function of SDS concentration in agreement with experiments and predicts the existence of a critical surfactant concentration beyond which thermodynamically stable FGS suspensions form. Around the critical surfactant concentration, particles form dense clusters and rapidly sediment. At surfactant concentrations lower than the critical concentration, a contiguous ramified network of FGS gel forms which also densifies, but at a lower rate, and sediments with time. This densification leads to graphite-like structures. In the second part, I present a model for the prediction of the mechanical properties of elastomers filled with 2-D particles. I apply this model to the Poly-dimethylsiloxane (PDMS)-FGS system. For a perfect polymer matrix and when inter-particle forces are ignored the strength of the composite can be increased with the addition of particles but elongation at failure decreases relative to neat PDMS. Maximum load transfer to the particles is achieved when particles are covalently linked to span the whole polymer matrix. Minimum drop in elongation at failure can be achieved by maximizing the distance between the covalently linked particles. When the assumption of a perfect polymer matrix is relaxed, it can be shown that there is a certain particle concentration range for which elongation at failure can be increased as the particles can protect the polymer by redistributing high stresses created by inherent polymer defects that would lead to early failure.
Carrasquel, Isha. "STRUCTURE-PROPERTY QUANTIFICATION RELATED TO CRASHWORTHINESS". MSSTATE, 2008. http://sun.library.msstate.edu/ETD-db/theses/available/etd-07102008-140429/.
Pełny tekst źródłaKim, Joon-Seop. "Structure-morphology-mechanical property relationships in various random ionomers". Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=28475.
Pełny tekst źródłaIn the second part, the effects of surfactant addition and chemical structure of ionomers were investigated. Sodium sulfonated polystyrene ionomers were mixed with the surfactant sodium p-dodecylbenzene sulfonate. This surfactant molecule has a head group identical to the ionic group of the polymer chain. Therefore, the head group resides in the multiplets, and tail group in the restricted mobility region surrounding the multiples. This results in a dramatic decrease in the cluster $T sb{ rm g}$ as a function of the amount of added surfactant. In the next project, the contact surface area of the chain and its effect on multiplet size was studied. An inverse relationship between contact surface area and size of multiplet was found; if the size of multiplet is decreased, the cluster $T sb{ rm g}$ increases and the ionic plateau is also higher and longer. Furthermore, when the pendant group of the polymer is replaced by a bulkier group, the chain becomes stiffer. As a result, the two $T sb{ rm g}$s shift to higher temperatures. In still another part of the study, the dynamic mechanical properties of poly(styrene-co-sodium methacrylate) ionomers were re-investigated in detail. Discontinuities in the plots of various parameters obtained from the tan $ delta$ vs temperature and modulus vs temperature curves as a function of the ion contents were found. These discontinuities suggest that there are two morphological changes in the system as a function of the ion contents, one at ca. 4-6 and the other at ca. 12-14 mol % of ions. In addition, the data were interpreted using filler and percolation concepts. The Guth equation for modulus vs filler content is applicable up to 30 volume % of the clusters. The Halpin-Tsai equation for the regular system is also applicable at low ion contents. For the percolation approach, the percolation threshold was found at 5.4 mol % of ions. The critical exponent and critical volume fraction of clusters were found to be 1.31 and 0.64, respe
Benjamin, Alex(Alex Robert). "3D organ property mapping using freehand ultrasound scans". Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/128989.
Pełny tekst źródłaCataloged from student-submitted PDF of thesis.
Includes bibliographical references (pages 141-151).
3D organ property mapping has gained a considerable amount of interest in the recent years because of its diagnostic and clinical significance. Existing methods for 3D property mapping include computed tomography (CT), magnetic resonance imaging (MRI), and 3D ultrasound (3DUS). These methods, while capable of producing 3D maps, suffer from one or more of the following drawbacks: high cost, long scan times, computational complexity, use of ionizing radiation, lack of portability, and the need for bulky equipment. We propose the development of a framework that allows for the creation of 3D property maps at point of care (specifically structure and speed of sound). A fusion of multiple low-cost sensors in a Bayesian framework localizes a conventional 1D-ultrasound probe with respect to the room or the patient's body; localizing the probe relative to the body is achieved by using the patient's superficial vasculature as a natural encoding system. Segmented 2D ultrasound images and quantitative 2D speed of sound maps obtained using numeric inversion are stitched together to create 3D property maps. A further advantage of this framework is that it provides clinicians with dynamic feedback during freehand scans; specifically, it dynamically updates the underlying structural or property map to reflect high and low uncertainty regions. This allows clinicians to repopulate regions within additional scans. Lastly, the method also allows for the registration and comparison of longitudinally acquired 3D property/structural maps.
by Alex Benjamin.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Mechanical Engineering
Hollinshead, Phillip Anthony. "Texture and mechanical property developments in aluminium alloy hot rolling". Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/38036.
Pełny tekst źródłaKibble, Kevin Alexander. "Surface finish-mechanical property relation in reaction-bonded silicon carbide". Thesis, University of Wolverhampton, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240364.
Pełny tekst źródłaKsiążki na temat "Mechanical property"
Chatterjee, S. Mechanical property studies on irradiated garter springs. Mumbai, India: Bhabha Atomic Research Centre, 1999.
Znajdź pełny tekst źródłaGeimer, Robert L. Mechanical property ratios: A measure of flake alignment. Madison, WI: U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, 1986.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Structure-property relationships of bismaleimides: A dissertation ... [Washington, DC: National Aeronautics and Space Administration, 1997.
Znajdź pełny tekst źródłaYi-Wen, Cheng, McCowan Chris N i National Institute of Standards and Technology (U.S.), red. Structure-property relationships in steel produced in hot-strip mills. Boulder, Colo: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1999.
Znajdź pełny tekst źródłaYi-Wen, Cheng, McCowan C. N i National Institute of Standards and Technology (U.S.), red. Structure-property relationships in steel produced in hot-strip mills. Boulder, Colo: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1999.
Znajdź pełny tekst źródłaYi-Wen, Cheng, McCowan Chris N i National Institute of Standards and Technology (U.S.), red. Structure-property relationships in steel produced in hot-strip mills. Boulder, Colo: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1999.
Znajdź pełny tekst źródłaFarley, Gary L. Relationship between mechanical-property and energy-absorption trends for composite tubes. Hampton, Va: Langley Research Center, 1992.
Znajdź pełny tekst źródłaCenter, Langley Research, i United States. Army Aviation Systems Command., red. Mechanical property characterization and impact resistance of selected graphite/PEEK composite materials. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1991.
Znajdź pełny tekst źródłaHales, Stephen J. Structure-property correlations in Al-Li alloy integrally stiffened extrusions. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 2001.
Znajdź pełny tekst źródłaA, Hafley Robert, i Langley Research Center, red. Structure-property correlations in Al-Li alloy integrally stiffened extrusions. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 2001.
Znajdź pełny tekst źródłaCzęści książek na temat "Mechanical property"
Gooch, Jan W. "Mechanical Property". W Encyclopedic Dictionary of Polymers, 449. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_7255.
Pełny tekst źródłaJacquemin, F., i S. Fréour. "Water–Mechanical Property Coupling". W Solid Mechanics and Its Applications, 115–28. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7417-9_4.
Pełny tekst źródłaKennedy, Peter, i Rong Zheng. "Improved Mechanical Property Modeling". W Flow Analysis of Injection Molds, 123–30. München: Carl Hanser Verlag GmbH & Co. KG, 2013. http://dx.doi.org/10.3139/9781569905227.008.
Pełny tekst źródłaKennedy, Peter, i Rong Zheng. "Improved Mechanical Property Modeling". W Flow Analysis of Injection Molds, 123–30. München, Germany: Carl Hanser Verlag GmbH & Co. KG, 2013. http://dx.doi.org/10.1007/978-1-56990-522-7_8.
Pełny tekst źródłaLuo, Yunhua. "Bone Density and Mechanical Property". W Image-Based Multilevel Biomechanical Modeling for Fall-Induced Hip Fracture, 31–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51671-4_4.
Pełny tekst źródłaNakai, Masaaki, i Mitsuo Niinomi. "Mechanical Property of Biomedical Materials". W Novel Structured Metallic and Inorganic Materials, 385–97. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7611-5_26.
Pełny tekst źródłaBaik, Ku Youn, Chang Ho Kim, Suk Yi Woo, Sae Chae Jeoung i Kwang-Sup Soh. "Membrane Mechanical Property of Primo Microcells". W The Primo Vascular System, 157–61. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0601-3_22.
Pełny tekst źródłaMcHargue, Carl J. "Mechanical Property Determination Using Nanoindentation Techniques". W Tribology Issues and Opportunities in MEMS, 487–508. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5050-7_36.
Pełny tekst źródłaMcHargue, Carl J. "Breakout Session Report: Mechanical Property Measurements". W Tribology Issues and Opportunities in MEMS, 629–32. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5050-7_50.
Pełny tekst źródłaFujiyama, Mitsuyoshi. "Morphology-mechanical property relationships in injection molding". W Polymer Science and Technology Series, 519–26. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4421-6_70.
Pełny tekst źródłaStreszczenia konferencji na temat "Mechanical property"
Steen, Marc, i Constantina Filiou. "Mechanical Property Scatter in CFCCs". W ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-319.
Pełny tekst źródłaSuda, Mitsunori, Takanori Kitamura, Ratchaneekorn Wongpajan i Zhiyuan Zhang. "Effect of Paper Property on Mechanical Property of Paper Tube". W ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-51392.
Pełny tekst źródłaLi, Xiuguang, Fan Zhang, Shengchang Ji, Zhiyuan Pan, Weifeng Lu i Cao Zhan. "Mechanical property of degraded insulation spacers through dynamic mechanical analyzer". W 2017 IEEE 19th International Conference on Dielectric Liquids (ICDL). IEEE, 2017. http://dx.doi.org/10.1109/icdl.2017.8124669.
Pełny tekst źródłaReddy, B. R., Ashok Kumar Santra, David Eugene McMechan, Dennis W. Gray, Chad Brenneis i Rick Dunn. "Cement Mechanical Property Measurements Under Wellbore Conditions". W SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2005. http://dx.doi.org/10.2118/95921-ms.
Pełny tekst źródłaTao Chen, Lin Zhang, Jian Wu, Shibing Liu i Tiechuan Zuo. "A compact microstructure mechanical property measuring system". W 2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 2008. http://dx.doi.org/10.1109/nems.2008.4484275.
Pełny tekst źródłaShoop, S., W. Wieder i B. Elder. "Mechanical Property Measurements on Various Snow Surfaces". W 18th International Conference on Cold Regions Engineering and 8th Canadian Permafrost Conference. Reston, VA: American Society of Civil Engineers, 2019. http://dx.doi.org/10.1061/9780784482599.038.
Pełny tekst źródłaShen, Hui, i Ahmed Abdel-Mohti. "Mechanical Property Studies of Nanolayered Polymer Membranes". W 2nd International Electronic Conference on Materials. Basel, Switzerland: MDPI, 2016. http://dx.doi.org/10.3390/ecm-2-e001.
Pełny tekst źródłaFan, Y. F., J. Zhou i Z. Q. Hu. "Study on Mechanical Property of Corroded Pipeline". W International Conference on Pipeline Engineering and Construction. Reston, VA: American Society of Civil Engineers, 2007. http://dx.doi.org/10.1061/40934(252)23.
Pełny tekst źródłaCardinale, Gregory F., i Randal W. Tustison. "Mechanical property measurement of polycrystalline diamond films". W SPIE Proceedings, redaktorzy Albert Feldman i Sandor Holly. SPIE, 1990. http://dx.doi.org/10.1117/12.22448.
Pełny tekst źródłaGupta, Vikas, Jie-Hua Zhao, Darvin Edwards, Clay Dustin Mortensen, Colby Heideman, David C. Johnson, Kuan-Hsun Lu i Paul S. Ho. "Ultra low-k dielectric mechanical property characterization". W 2008 11th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (I-THERM). IEEE, 2008. http://dx.doi.org/10.1109/itherm.2008.4544338.
Pełny tekst źródłaRaporty organizacyjne na temat "Mechanical property"
Fielding, Randall, i Brady Mackowiak. U-10Mo Mechanical Property Study Results. Office of Scientific and Technical Information (OSTI), wrzesień 2017. http://dx.doi.org/10.2172/1466815.
Pełny tekst źródłaClark, Hart i Beavers. L52030 In-Situ Pipeline Mechanical Property Characterization. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), marzec 2005. http://dx.doi.org/10.55274/r0011148.
Pełny tekst źródłaFreiman, S. W., D. C. Cranmer, E. R. Jr Fuller, W. Haller, M. J. Koczak, M. Barsoum, T. Palamides i U. V. Deshmukh. Mechanical property enhancement in ceramic matrix composites. Gaithersburg, MD: National Institute of Standards and Technology, 1989. http://dx.doi.org/10.6028/nist.ir.89-4073.
Pełny tekst źródłaShoop, Sally, Wendy Wieder i Bruce Elder. Mechanical property measurements on various snow surfaces. Engineer Research and Development Center (U.S.), sierpień 2020. http://dx.doi.org/10.21079/11681/37695.
Pełny tekst źródłaMcCabe, Rodney J. Strength Member/Liner Mechanical Property/Modeling Update. Office of Scientific and Technical Information (OSTI), sierpień 2012. http://dx.doi.org/10.2172/1050003.
Pełny tekst źródłaFreiman, S. W., T. W. Coyle, E. R. Fuller, P. L. Swanson, D. C. Cranmer i W. Haller. Mechanical property enhancement in ceramic matrix composites. Gaithersburg, MD: National Bureau of Standards, 1988. http://dx.doi.org/10.6028/nbs.ir.88-3798.
Pełny tekst źródłaTiku, Pussegoda i Luffman. L52031 In-Situ Pipeline Mechanical Property Characterization. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), czerwiec 2003. http://dx.doi.org/10.55274/r0011133.
Pełny tekst źródłaGarrison, Ben, Caleb Massey, Weiju Ren, Maxim Gussev, Tim Graening Seibert, R. Sitterson, Nathan Capps i Kory Linton. Mechanical properties of Zircaloy cladding tubes and contributions to M.E.T.A. mechanical property database. Office of Scientific and Technical Information (OSTI), sierpień 2023. http://dx.doi.org/10.2172/1997689.
Pełny tekst źródłaStinton, D., R. Lowden i R. Krabill. Mechanical property characterization of fiber-reinforced SiC matrix composites. Office of Scientific and Technical Information (OSTI), kwiecień 1990. http://dx.doi.org/10.2172/6937422.
Pełny tekst źródłaPrince, Zachary, Dewen Yushu i Lynn Munday. Enhanced mechanical property evaluation using innovative data analytics capability. Office of Scientific and Technical Information (OSTI), czerwiec 2021. http://dx.doi.org/10.2172/1812088.
Pełny tekst źródła