Gotowa bibliografia na temat „Mechanical dynamic systems”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Mechanical dynamic systems”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Mechanical dynamic systems"
Dolgin, V. P. "Dynamic diagnostics of mechanical manufacturing systems". Journal of Mathematical Sciences 82, nr 2 (listopad 1996): 3316–19. http://dx.doi.org/10.1007/bf02363992.
Pełny tekst źródłaWu, Zhe, Guang Yang, Qiang Zhang, Shengyue Tan i Shuyong Hou. "Information Dynamic Correlation of Vibration in Nonlinear Systems". Entropy 22, nr 1 (31.12.2019): 56. http://dx.doi.org/10.3390/e22010056.
Pełny tekst źródłaAuslander, David M. "Dynamic Systems and Control Division". Mechanical Engineering 135, nr 06 (1.06.2013): S21—S22. http://dx.doi.org/10.1115/1.2013-jun-10.
Pełny tekst źródłaColbaugh, R., E. Barany i K. Glass. "Adaptive stabilization of uncertain nonholonomic mechanical systems". Robotica 16, nr 2 (marzec 1998): 181–92. http://dx.doi.org/10.1017/s0263574798000514.
Pełny tekst źródłaWen, Bang Chun, Zhao Hui Ren, Qing Kai Han, Xiao Peng Li i Ju Quan Mao. "Nonlinear Dynamics of Mechanical Systems with Sectional Frictions". Key Engineering Materials 353-358 (wrzesień 2007): 754–57. http://dx.doi.org/10.4028/www.scientific.net/kem.353-358.754.
Pełny tekst źródłaDinc, O. S., R. Cromer i S. J. Calabrese. "Redesigning Mechanical Systems for Low Wear Using System Dynamics Modeling". Journal of Tribology 118, nr 2 (1.04.1996): 415–22. http://dx.doi.org/10.1115/1.2831318.
Pełny tekst źródłaJuang, Jer-Nan, Shih-Chin Wu, Minh Phan i Richard W. Longman. "Passive dynamic controllers for nonlinear mechanical systems". Journal of Guidance, Control, and Dynamics 16, nr 5 (wrzesień 1993): 845–51. http://dx.doi.org/10.2514/3.21091.
Pełny tekst źródłaCiobanu, Gabriel, i Dănuţ Rusu. "Kinematics of Mechanical Systems by Dynamic Geometry". Mathematics 10, nr 23 (25.11.2022): 4457. http://dx.doi.org/10.3390/math10234457.
Pełny tekst źródłaSHI, F., P. RAMESH i S. MUKHERJEE. "DYNAMIC ANALYSIS OF MICRO-ELECTRO-MECHANICAL SYSTEMS". International Journal for Numerical Methods in Engineering 39, nr 24 (30.12.1996): 4119–39. http://dx.doi.org/10.1002/(sici)1097-0207(19961230)39:24<4119::aid-nme42>3.0.co;2-4.
Pełny tekst źródłaØysaed, Harry. "Dynamic mechanical properties of multiphase acrylic systems". Journal of Biomedical Materials Research 24, nr 8 (sierpień 1990): 1037–48. http://dx.doi.org/10.1002/jbm.820240806.
Pełny tekst źródłaRozprawy doktorskie na temat "Mechanical dynamic systems"
Davison, Paul. "Dynamic analysis of flexible multibody mechanical systems". Thesis, University of Bath, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.261035.
Pełny tekst źródłaTariku, Fitsum. "Simulation of dynamic mechanical systems with stick-slip friction". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0011/MQ38415.pdf.
Pełny tekst źródłaYunt, Mehmet 1975. "Nonsmooth dynamic optimization of systems with varying structure". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/65284.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (p. 357-365).
In this thesis, an open-loop numerical dynamic optimization method for a class of dynamic systems is developed. The structure of the governing equations of the systems under consideration change depending on the values of the states, parameters and the controls. Therefore, these systems are called systems with varying structure. Such systems occur frequently in the models of electric and hydraulic circuits, chemical processes, biological networks and machinery. As a result, the determination of parameters and controls resulting in the optimal performance of these systems has been an important research topic. Unlike dynamic optimization problems where the structure of the underlying system is constant, the dynamic optimization of systems with varying structure requires the determination of the optimal evolution of the system structure in time in addition to optimal parameters and controls. The underlying varying structure results in nonsmooth and discontinuous optimization problems. The nonsmooth single shooting method introduced in this thesis uses concepts from nonsmooth analysis and nonsmooth optimization to solve dynamic optimization problems involving systems with varying structure whose dynamics can be described by locally Lipschitz continuous ordinary or differential-algebraic equations. The method converts the infinitedimensional dynamic optimization problem into an nonlinear program by parameterizing the controls. Unlike the state of the art, the method does not enumerate possible structures explicitly in the optimization and it does not depend on the discretization of the dynamics. Instead, it uses a special integration algorithm to compute state trajectories and derivative information. As a result, the method produces more accurate solutions to problems where the underlying dynamics is highly nonlinear and/or stiff for less effort than the state of the art. The thesis develops substitutes for the gradient and the Jacobian of a function in case these quantities do not exist. These substitutes are set-valued maps and an elements of these maps need to be computed for optimization purposes. Differential equations are derived whose solutions furnish the necessary elements. These differential equations have discontinuities in time. A numerical method for their solution is proposed based on state event location algorithms that detects these discontinuities. Necessary conditions of optimality for nonlinear programs are derived using these substitutes and it is shown that nonsmooth optimization methods called bundle methods can be used to obtain solutions satisfying these necessary conditions. Case studies compare the method to the state of the art and investigate its complexity empirically.
by Mehmet Yunt.
Ph.D.
Orbak, Âli Yurdun 1970. "Identification and self-tuning control of dynamic systems". Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/35457.
Pełny tekst źródłaDing, Huali. "Dynamic wear models for gear systems". Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1194025602.
Pełny tekst źródłaOspanov, Asset. "DELAY DIFFERENTIAL EQUATIONS AND THEIR APPLICATION TO MICRO ELECTRO MECHANICAL SYSTEMS". VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5674.
Pełny tekst źródłaShi, Zhenghong. "Nonlinear Time-varying Dynamic Modeling of Vehicle Driveline Systems with Emphasis on Hypoid Gear Excitation and Response". University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1490355055106922.
Pełny tekst źródłaMoody, Seth S. "Development of Dynamic Thermal Performance Metrics For Eco-roof Systems". Thesis, Portland State University, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=1535587.
Pełny tekst źródłaIn order to obtain credit for an eco-roof in building energy load calculations the steady state and time-varying thermal properties (thermal mass with evapotranspiration) must be fully understood. The following study presents results of experimentation and modeling in an effort to develop dynamic thermal mass performance metrics for eco-roof systems. The work is focused on understanding the thermal parameters (foliage & soil) of an eco-roof, further validation of the EnergyPlus Green Roof Module and development of a standardized metric for assessing the time-varying thermal benefits of eco-roof systems that can be applied across building types and climate zones.
Eco-roof foliage, soil and weather parameters were continuously collected at the Green Roof Integrated PhotoVoltaic (GRIPV) project from 01/20/2011 to 08/28/2011. The parameters were used to develop an EnergyPlus eco-roof validation model. The validated eco-roof model was then used to estimate the Dynamic Benefit for Massive System (DBMS) in 4 climate-locations: Portland Oregon, Chicago Illinois, Atlanta Georgia and Houston Texas.
GRIPV30 (GRIPV soil with 30% soil organic matter) was compared to 12 previously tested eco-roof soils. GRIPV30 reduced dry soil conductivity by 50%, increased field capacity by 21% and reduced dry soil mass per unit volume by 60%. GRIPV30 soil had low conductivity at all moisture contents and high heat capacity at moderate and high moisture content. The characteristics of the GRIPV30 soil make it a good choice for moisture retention and reduction of heat flux, improved thermal mass (heat storage) when integrating an eco-roof with a building.
Eco-roof model validation was performed with constant seasonal moisture driven soil properties and resulted in acceptable measured - modeled eco-roof temperature validation. LAI has a large impact on how the Green Roof Module calculates the eco-roof energy balance with a higher impact on daytime (measured - modeled) soil temperature differential and most significant during summer.
DBMS modeling found the mild climates of Atlanta Georgia and Houston Texas with eco-roof annual DBMS of 1.03, 3% performance improvement above the standard building, based on cooling, heating and fan energy consumption. The Chicago Illinois climate with severe winter and mild spring/summer/fall has an annual DBMS of 1.01. The moderate Portland Oregon climate has a below standard DBMS of 0.97.
Tubilla, Kuri Fernando. "Dynamic scheduling of manufacturing systems with setups and random disruptions". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/67606.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (p. 249-256).
Manufacturing systems are often composed of machines that can produce a variety of items but that most undergo time-consuming (and possibly costly) setups when switching between product types. Scheduling these setups efficiently can have important economic effects on the performance of the plant and involves a tradeoff between throughput, inventory, and operating costs. In addition, the schedule must be robust to random disruptions such as failures or raw material shortages, which are common in production environments. In this thesis, we study policies that address the setup scheduling problem dynamically, in response to current conditions in the system. A new heuristic, called the Hedging Zone Policy (HZP), is introduced and developed. It is a dynamic-sequence policy that always produces the current part type at its maximum production rate until a fixed base stock level is reached. Then, before switching setups, the policy might produce the current part type at its demand rate for some additional time. When selecting changeovers, the HZP implements two types of decision rules. If the difference between base stock and surplus level is small for all part types, the item with the largest weighted difference is selected. Otherwise, the policy uses a fixed priority ranking to select between items that are far from their base stock value. In order to demonstrate the benefits of our policy, we also adapt and implement several other heuristics that have been proposed in the literature for related models. The policies are first analyzed in a purely deterministic setting. The stability of the HZP is addressed and it is shown that a poor selection of its parameters leads to a condition in which some low-priority parts are ignored, resulting in an unstable system. Using Lyapunov's direct method, we obtain an easy-to-evaluate and not-too-conservative condition that ensures production of all part types with bounded surplus. We then compare, through a series of extensive numerical experiments with three-part-type systems, the deterministic performance of the policies in both make-to-order and make-to-stock settings. We show that the HZP outperforms other policies within its class in both cases, a fact that is mainly attributed to its priority-based decisions. When compared to the approximate optimal cost of the problem, our policy performs very well in the make-to-order case, while the simplicity of its base stock structure makes it less competitive in the deterministic make-to-stock problem. The results are then leveraged for the study of a stochastic model, where we consider the effect of random disruptions in the form of machine failures. We prove that our model converges to a fluid limit under an appropriate scaling. This fact allows us to employ our deterministic stability conditions to verify the stochastic (rate) stability of the failure-prone system. We also extend our previous numerical experiments by characterizing the performance of the policies in the stochastic setting. The results show that the HZP still outperforms other policies in the same class. Furthermore, we find that except for cases where failures occur much less or much more frequently than changeovers, the HZP outperforms a fixed-sequence policy that is designed to track a pre-determined, near-optimal deterministic schedule.
by Fernando Tubilla.
Ph.D.
Lee, Sungho Ph D. Massachusetts Institute of Technology. "Dynamic response analysis of spar buoy floating wind turbine systems". Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/46545.
Pełny tekst źródłaIncludes bibliographical references (leaves 83-84).
The importance of alternative energy development has been dramatically increased by the dwindling supplies of oil and gas, and our growing efforts to protect our environment. A variety of meaningful steps have been taken in order to come up with cleaner, healthier and more affordable energy alternatives. Wind energy is one of the most reliable energy alternatives for countries that have sufficiently large wind sources. Due to the presence of steady and strong winds, and the distance from coastline residential, the offshore wind farm has become highly attractive as an ideal energy crisis solution. Floating wind turbine systems are being considered as a key solution to make the offshore wind farm feasible from an economic viewpoint, and viable as an energy resource. This paper presents the design of a synthetic mooring system for spar buoy floating wind turbines functioning in shallow water depths. Nacelle acceleration, static and dynamic tensions on catenaries, the maximum tension acting on the anchors are considered as design performances, and a stochastic analysis method has been used to evaluate those quantities based on sea state spectral density functions. The performance at a 100-year hurricane condition is being defined as a limiting case, and a linear wave theory has been the most fundamental theory applied for the present analysis.
by Sungho Lee.
S.M.
Książki na temat "Mechanical dynamic systems"
Angeles, Jorge. Dynamic Response of Linear Mechanical Systems. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4419-1027-1.
Pełny tekst źródłaAgrawal, Sunil Kumar. Optimization of Dynamic Systems. Dordrecht: Springer Netherlands, 1999.
Znajdź pełny tekst źródłaAgrawal, Sunil Kumar. Optimization of dynamic systems. Dordrecht: Kluwer Academic Publishers, 1999.
Znajdź pełny tekst źródłaMatasov, A. I. Estimators for Uncertain Dynamic Systems. Dordrecht: Springer Netherlands, 1998.
Znajdź pełny tekst źródłaL, Junkins John, red. Optimal estimation of dynamic systems. Wyd. 2. Boca Raton, FL: Chapman and Hall/CRC, 2011.
Znajdź pełny tekst źródłaH, Richardson Herbert, Nelson Clayton C, American Society of Mechanical Engineers. Steering Committee on Dynamic Systems and Control. i American Society of Mechanical Engineers., red. Research needs in dynamic systems and control. New York, NY (345 E. 47th St., New York 10017): American Society of Mechanical Engineers, 1988.
Znajdź pełny tekst źródłaEsfandiari, Ramin S. Modeling and analysis of dynamic systems. Boca Raton: Taylor & Francis, 2010.
Znajdź pełny tekst źródła1974-, Lu Bei, red. Modeling and analysis of dynamic systems. Boca Raton: Taylor & Francis, 2010.
Znajdź pełny tekst źródłaservice), SpringerLink (Online, red. Dynamic Response of Linear Mechanical Systems: Modeling, Analysis and Simulation. Boston, MA: Springer Science+Business Media, LLC, 2012.
Znajdź pełny tekst źródłaA, Rothbart Harold, i Brown Thomas H. Jr, red. Mechanical design handbook: Measurement, analysis, and control of dynamic systems. Wyd. 2. New York: McGraw-Hill, 2006.
Znajdź pełny tekst źródłaCzęści książek na temat "Mechanical dynamic systems"
Esfandiari, Ramin S., i Bei Lu. "Mechanical Systems". W Modeling and Analysis of Dynamic Systems, 169–261. Third edition. | Boca Raton : Taylor & Francis, CRC Press, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/b22138-5.
Pełny tekst źródłaSkowronski, Janislaw M. "Dynamic Games". W Control of Nonlinear Mechanical Systems, 368–405. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3722-9_8.
Pełny tekst źródłaDarbyshire, Alan, i Charles Gibson. "Mechanical principles of dynamic engineering systems". W Mechanical Engineering, 75–185. Wyd. 4. London: Routledge, 2022. http://dx.doi.org/10.1201/9781003256571-2.
Pełny tekst źródłaFindeisen, Dietmar. "Theory of Dynamic Systems". W System Dynamics and Mechanical Vibrations, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04205-2_1.
Pełny tekst źródłaWhite, K. Preston. "Mathematical Models of Dynamic Physical Systems". W Mechanical Engineers' Handbook, 300–382. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/0471777455.ch10.
Pełny tekst źródłaSrinivasan, Krishnaswamy. "State-Space Methods for Dynamic Systems Analysis". W Mechanical Engineers' Handbook, 717–56. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/0471777455.ch17.
Pełny tekst źródłaVulfson, Iosif. "Dynamic Models of Cyclic Mechanical Systems". W Foundations of Engineering Mechanics, 17–39. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12634-0_2.
Pełny tekst źródłaWijker, Jaap. "Random Vibration of Linear Dynamic Systems". W Mechanical Vibrations in Spacecraft Design, 201–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08587-5_11.
Pełny tekst źródłaWijker, Jaap. "Free-free Dynamic Systems, Inertia Relief". W Mechanical Vibrations in Spacecraft Design, 303–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08587-5_14.
Pełny tekst źródłaWu, Chongjian. "WPA for Analyzing Hybrid Dynamic Systems". W Springer Tracts in Mechanical Engineering, 131–55. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7237-1_5.
Pełny tekst źródłaStreszczenia konferencji na temat "Mechanical dynamic systems"
Chopra, Nikhil, i YenChen Liu. "Controlled Synchronization of Mechanical Systems". W ASME 2008 Dynamic Systems and Control Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/dscc2008-2267.
Pełny tekst źródłaCheng, Hongtai, Heping Chen, Xiaohua Zhang i Hongjun Chen. "Dynamic Servo Control for Underactuated Mechanical Systems". W ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87659.
Pełny tekst źródłaWoo, Hanseung, i Kyoungchul Kong. "Impedance Reduction Controller Design for Mechanical Systems". W ASME 2013 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/dscc2013-3737.
Pełny tekst źródłaLiang, Changwei, You Wu i Lei Zuo. "Vibration Energy Harvesting System With Mechanical Motion Rectifier". W ASME 2015 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/dscc2015-9837.
Pełny tekst źródłaKirimoto, Atsushi, Hiroaki Ito, Mitsuhiro Horade, Toshio Takayama, Misato Chimura, Tomohito Ohtani, Yasushi Sakata i Makoto Kaneko. "On-Chip Dynamic Mechanical Measurement". W 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2019. http://dx.doi.org/10.1109/memsys.2019.8870789.
Pełny tekst źródłaWang, Shuo, Hyunglae Lee i Neville Hogan. "Ankle Mechanical Impedance Under Muscle Fatigue". W ASME 2013 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/dscc2013-4060.
Pełny tekst źródłaYuan, L., i J. Rastegar. "On the Dynamic Behavior of High Speed Mechanical Systems". W ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/dac-8674.
Pełny tekst źródłaTan, Yonghong, Ruili Dong, Yanyan Li, Xiang Chen i Hong He. "Nonsmooth dynamic filtering for mechanical servo-systems". W 2016 12th IEEE International Conference on Control and Automation (ICCA). IEEE, 2016. http://dx.doi.org/10.1109/icca.2016.7505327.
Pełny tekst źródłaPotter, T. E., K. D. Willmert i M. Sathyamoorthy. "Nonlinear Optimal Design of Dynamic Mechanical Systems". W ASME 1992 Design Technical Conferences. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/detc1992-0350.
Pełny tekst źródłaAl-Bedoor, B. O., i Y. A. Khulief. "Dynamic Analysis of Mechanical Systems With Elastic Telescopic Members". W ASME 1994 Design Technical Conferences collocated with the ASME 1994 International Computers in Engineering Conference and Exhibition and the ASME 1994 8th Annual Database Symposium. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/detc1994-0274.
Pełny tekst źródłaRaporty organizacyjne na temat "Mechanical dynamic systems"
Haug, Edward J. Dynamic and Design Sensitivity Analysis of Rigid and Elastic Mechanical Systems with Intermittent Motion. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1985. http://dx.doi.org/10.21236/ada163982.
Pełny tekst źródłaChen, Xiao, Jaisree Iyer i Susan Carroll. Dynamic reduced order modelling (ROM) of chemical and mechanical processes in CO2-cement systems. Office of Scientific and Technical Information (OSTI), wrzesień 2018. http://dx.doi.org/10.2172/1476178.
Pełny tekst źródłaWisanrakkit, G., i J. K. Gillham. Effect of Physical Annealing on the Dynamic Mechanical Properties of A High T(g) Amine-Cured Epoxy Systems. Fort Belvoir, VA: Defense Technical Information Center, marzec 1989. http://dx.doi.org/10.21236/ada205980.
Pełny tekst źródłaLong, Wendy, Zackery McClelland, Dylan Scott i C. Crane. State-of-practice on the mechanical properties of metals for armor-plating. Engineer Research and Development Center (U.S.), styczeń 2023. http://dx.doi.org/10.21079/11681/46382.
Pełny tekst źródłaPerdigão, Rui A. P., i Julia Hall. Spatiotemporal Causality and Predictability Beyond Recurrence Collapse in Complex Coevolutionary Systems. Meteoceanics, listopad 2020. http://dx.doi.org/10.46337/201111.
Pełny tekst źródłaBloch, Anthony M. Control, Stabilization and Dynamics of Mechanical Systems. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1998. http://dx.doi.org/10.21236/ada380932.
Pełny tekst źródłaAzene, Muluneh, A. K. Bajaj i O. D. Nwokah. Structural Dynamics of Nonlinear Mechanical Systems with Cyclic Symmetry. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1996. http://dx.doi.org/10.21236/ada391308.
Pełny tekst źródłaSen, Surajit. Dynamics and Control of Mechanical Energy Propagation in Granular Systems. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2012. http://dx.doi.org/10.21236/ada587076.
Pełny tekst źródłaHristu, Dimitrios. The Dynamics of a Forced Sphere-Plate Mechanical System. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2000. http://dx.doi.org/10.21236/ada439900.
Pełny tekst źródłaHolmes, Philip. Nonlinear Dynamical Systems in Mechanics and Biology. Fort Belvoir, VA: Defense Technical Information Center, lipiec 1995. http://dx.doi.org/10.21236/ada299148.
Pełny tekst źródła