Gotowa bibliografia na temat „MDSC”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „MDSC”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "MDSC"
Gjerstorff, Morten F., Sofie Traynor, Odd L. Gammelgaard, Simone Johansen, Christina B. Pedersen, Henrik J. Ditzel i Mikkel G. Terp. "PDX Models: A Versatile Tool for Studying the Role of Myeloid-Derived Suppressor Cells in Breast Cancer". Cancers 14, nr 24 (13.12.2022): 6153. http://dx.doi.org/10.3390/cancers14246153.
Pełny tekst źródłaSmith, Alyssa D., Chunwan Lu, Daniela Payne, Amy V. Paschall, John David Klement, Priscilla S. Redd, Mohammed Ibrahim i in. "Autocrine IL6 activates the STAT3-DNMT axis to silence the TNFa-RIP1 necroptosis pathway to sustain myeloid-derived suppressor cell survival and accumulation". Journal of Immunology 204, nr 1_Supplement (1.05.2020): 164.10. http://dx.doi.org/10.4049/jimmunol.204.supp.164.10.
Pełny tekst źródłaAristova, T. A., E. V. Batorov, V. V. Sergeevicheva, S. A. Sizikova, G. Yu Ushakova, A. V. Gilevich, E. Ya Shevela, A. A. Ostanin i E. R. Chernykh. "Myeloidderived peripheral blood suppressor cells at haematopoietic stem cell mobilisation in multiple myeloma patients". Russian journal of hematology and transfusiology 66, nr 2 (2.09.2021): 218–30. http://dx.doi.org/10.35754/0234-5730-2021-66-2-218-230.
Pełny tekst źródłaGreen, Kathy, Li Wang, Randolph Noelle i William Green. "MDSC suppression of B cell responses in murine retrovirus-induced immunodeficiency: a role for VISTA (IRC4P.603)". Journal of Immunology 194, nr 1_Supplement (1.05.2015): 57.20. http://dx.doi.org/10.4049/jimmunol.194.supp.57.20.
Pełny tekst źródłaXie, Qifa, Jingwen Zhang, Smita Ghare, Shirish Barve i Craig McClain. "CD11b+/Gr-1int monocytic myeloid derived suppressor cells contribute to high-fat induced inflammation and delayed tolerance in mouse liver (54.15)". Journal of Immunology 186, nr 1_Supplement (1.04.2011): 54.15. http://dx.doi.org/10.4049/jimmunol.186.supp.54.15.
Pełny tekst źródłaPark, Young-Jun, Boyeong Song, Yun-Sun Kim, Eun-Kyung Kim, Jung-Mi Lee, Ga-Eun Lee, Jae-Ouk Kim, Yeon-Jeong Kim, Woo-Sung Chang i Chang-Yuil Kang. "Myeloid derived suppressor cells(MDSCs) emergence from distinct splenic precursors (162.28)". Journal of Immunology 188, nr 1_Supplement (1.05.2012): 162.28. http://dx.doi.org/10.4049/jimmunol.188.supp.162.28.
Pełny tekst źródłaLi, Xing, Qing-Jian Ye, Yan-Fang Xing, Jin-Xiang Lin, Qu Lin i Xiang-yuan Wu. "Expansion of Lox-1+CD15+ myeloid-derived suppressor cells in hepatocellular carcinoma patients." Journal of Clinical Oncology 35, nr 7_suppl (1.03.2017): 124. http://dx.doi.org/10.1200/jco.2017.35.7_suppl.124.
Pełny tekst źródłaGreen, Kathy A., Randolph J. Noelle, William R. Green i Li Wang. "Checkpoint Regulator VISTA plays a role in Suppression of B-Cell Responsiveness by Monocytic Myeloid Derived Suppressor Cells from LP-BM5 retrovirus-infected Mice". Journal of Immunology 196, nr 1_Supplement (1.05.2016): 195.14. http://dx.doi.org/10.4049/jimmunol.196.supp.195.14.
Pełny tekst źródłaGreen, Kathy, Li Wang i William Green. "Suppression of B cell responsiveness by LP-BM5 retrovirus-induced myeloid derived suppressor cells generated during a murine acquired immunodeficiency syndrome: a role for negative checkpoint regulator expression on the MDSCs (VIR7P.1059)". Journal of Immunology 192, nr 1_Supplement (1.05.2014): 208.11. http://dx.doi.org/10.4049/jimmunol.192.supp.208.11.
Pełny tekst źródłaFallah, Jaleh, C. Marcela Diaz-Montero, Patricia A. Rayman, Wei (Auston) Wei, Iris Yeong Fung Sheng, James Finke, Jin Sub Kim i in. "Correlation of myeloid-derived suppressor cells (MDSC) with pathologic complete response (pCR), recurrence free survival (RFS), and overall survival (OS) in patients with urothelial carcinoma (UC) undergoing cystectomy." Journal of Clinical Oncology 37, nr 7_suppl (1.03.2019): 437. http://dx.doi.org/10.1200/jco.2019.37.7_suppl.437.
Pełny tekst źródłaRozprawy doktorskie na temat "MDSC"
Limagne, Emeric. "Implication des cellules myéloïdes immunosuppressives (MDSC) et des lymphocytes TH17 dans l’efficacité des chimiothérapies et de l’immunothérapie". Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEP004/document.
Pełny tekst źródłaActual oncology is still facing resistance and rapid progression of cancer. Intrinsic resistance mechanisms developed by tumor cells determine chemotherapy and immunotherapy efficacy. It is now recognized that the host immune response status is in part implicated in the therapeutic outcome of patients. The aim of our research team is to characterize this response and to study the impact of therapies in order to identify the mechanisms associated with future exhaust of the tumor. In this context, we have shown that chemotherapy (5-FU, oxaliplatin, anti-VEGF: FOLFOX-bevacizumab) in some patients causes a drop in devices gMDSC (granulocytic myeloid derived suppressive cells) that is associated with better therapeutic response. Nevertheless, as in mice, this effect on gMDSC causes an elevation of Th17, a pro-angiogenic population, which limits the effectiveness of chemotherapy. The result of our work was aimed to test the effect "anti-Th17" activating SIRT1 deacetylase histone. SIRT1 is an enzyme capable of disrupting the acetylation of STAT3, a key factor in the differentiation of Th17. We have shown that by using pharmacological agonists SIRT1 (resveratrol, SRT1720, metformin) inhibits Th17 polarization by deacetylation of STAT3 and that this effect can limit tumor growth in colorectal and melanoma murine models (B16F10, CT26). We validated this concept in humans, suggesting that it is possible to target Th17 cells by this strategy in addition to chemotherapy. The final component of this work is devoted to the comparison of peripheral immunological profile of healthy volunteers to a prospective cohort of non-small cell lung cancer. This study has allowed us to highlight the immune alterations induced by the tumor and to link these changes in response to nivolumab (anti-PD-1). A first response predictive model could be generated using data from a panel analysis of myeloid cells. This model proves once again that gMDSC have a negative predictive role, while antigen presenting (dendritic cells and monocytes) expressing PD-L1 has a good predictive role. Data presented in this section are preliminary and must be confirmed with the validation cohort that is currently included. All of this work has shown that it is essential to specifically target immunosuppressive myeloid cells and Th17 to promote the efficacy of chemotherapy and immunotherapy in cancer
Metzger, Philipp [Verfasser], i Max [Akademischer Betreuer] Schnurr. "Myeloid-derived suppressor cells (MDSC) in murine pancreatic cancer: Role of IRF4 in development and function of MDSC in RIG-I-like helicase-based immunotherapy / Philipp Metzger ; Betreuer: Max Schnurr". München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2019. http://d-nb.info/1213245826/34.
Pełny tekst źródłaMundy-Bosse, Bethany L. "Myeloid-Derived Suppressor Cells in Tumor Immunology". The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1311261626.
Pełny tekst źródłaPapalini, Francesca. "Analisi del programma tollerogenico delle cellule soppressorie di origine mieloide". Doctoral thesis, Università degli studi di Padova, 2011. http://hdl.handle.net/11577/3423333.
Pełny tekst źródłaRIASSUNTO Le cellule tumorali sono in grado di modulare la reattività del sistema immunitario mediante un insieme di processi che regolano negativamente la risposta immunitaria. Questo processo è meglio noto come tolleranza immunologica. La chemioterapia antitumorale causa immunosoppressione ma favorisce anche l’attivazione di cellule effettrici del sistema immunitario sia, promuovendo la morte immunogenica delle cellule tumorali, che riducendo una componente cellulare fondamentale nella deregolazione della risposta immune indotta dal tumore. In questo lavoro abbiamo mostrato come il farmaco antimetabolita 5-fluorouracile induca un riduzione della popolazione mieloide soppressoria residente nella milza, attraverso una duratura azione che non influenza direttamente le cellule tumorali e che dipende integralmente dalla perturbazione della nicchia biologica condivisa dalle cellule CD8+ T central memory (TCM) e da un popolazione di cellule mieloidi attivate dal tumore, altamente proliferanti e dotate di una potente azione immunosoppressiva. L’eliminazione di questa nicchia mediante rimozione chirurgica della milza abroga completamente la tolleranza immunitaria indotta dal tumore. Inoltre, allo scopo di studiare i complessi meccanismi molecolari responsabili della funzione soppressoria delle MDSC, abbiamo caratterizzato la risposta purinergica P2-mediata indotta da ATP nelle cellule mieloidi, gettando le basi per una futura e approfondita indagine degli effetti mediati da questo messaggero extracellulare presente in elevate concentrazioni nel microambiente tumorale.
Assimacopoulos, Evangelia Maria. "Monitoring and Targeting of Myeloid-Derived Suppressor Cells (MDSC) in Different Mouse Cancer Models". Thesis, The University of Arizona, 2014. http://hdl.handle.net/10150/318817.
Pełny tekst źródłaLereclus, Emilie. "Origine et rôles des cellules myéloïdes suppressives dans le sepsis". Thesis, Limoges, 2018. http://www.theses.fr/2018LIMO0060/document.
Pełny tekst źródłaMyeloid-Derived Suppressor Cells (MDSC) are a heterogeneous population of immature myeloid cell, and are regrouped in two subsets: the monocytic-MDSC (M-MDSC) and the polymorphonuclear-MDSC (PMN-MDSC). These cells have immunosuppressive capacities and mainly act on T cells. MDSC can express the ligand PD-L1 and induce PD-1 expressing-T cells exhaustion. During sepsis, several immunological changes occur, and MDSC probably downregulate the hyper-inflammatory state, contributing to the immunosuppression phase encountered in patients after a sepsis. Immunocompromised patients can develop secondary infections, and reactivate latent virus. The aims of our study were to highlight the origin of MDSC in sepsis, and to explore their roles in the immunosuppression state, especially in the Torque Teno Virus (TTV) reactivation. Our results show, both ex vivo and in vitro, that in sepsis, MDSC originate from bone marrow are induced by G-CSF and IL-6. These PD-L1 expressing-cells are increased in peripheral blood very early in sepsis, and persist during hospitalization. These MDSC are able to inhibit T cells in vitro. The increase of TTV viral load is observed in peripheral blood of patients but is not correlated with MDSC frequencies. These results suggest that during sepsis, the cytokine storm boosts PD-L1 expressing MDSC’s production by bone marrow, which contribute in peripheral blood to the immunosuppression
Falisi, Erika. "Caratterizzazione di una sottopopolazione mieloide umana analoga ai promielociti e dotata di attività immunosoppressoria". Doctoral thesis, Università degli studi di Padova, 2011. http://hdl.handle.net/11577/3421993.
Pełny tekst źródłaIl sistema immunitario è in grado di bloccare il riconoscimento degli antigeni self e quindi lo sviluppo di risposte autoimmunitarie mediante il mantenimento della tolleranza immunitaria. Tale fenomeno viene sostenuto dall’azione di diverse popolazioni cellulari tolerogeniche, una delle quali è rappresentata cellule soppressorie di derivazione mieloide (MDSC). Le MDSC sono una popolazione molto eterogenea composta da cellule mieloidi immature caratterizzate dalla capacità di sopprimere sia la risposta immunitaria innata che quella adattativa. È stato ipotizzato che in condizioni patologiche, quali infezioni, malattie autoimmunitarie e neoplasie, il rilascio di diversi fattori di crescita induca l’aumento della mielopoiesi ed il blocco maturativo delle cellule mieloidi che si accumulano in uno stato di immaturità. Tali fattori solubili sono inoltre ritenuti coinvolti nella mobilizzazione e nell’attivazione delle MDSC. Le MDSC sono state identificate sia nel modello murino che in pazienti affetti da tumore. Mentre il fenotipo delle MDSC murine è facilmente identificabile mediante l’uso di marcatori specifici (Gr-1, CD11b e IL4Rα), le caratteristiche immunofenotipiche delle MDSC umane non sono ancora state definite. Nonostante questo, sia nel modello murino che nei pazienti affetti da tumore, le MDSC si sono dimostrate avere caratteristiche talvolta granulocitarie e talvolta monocitarie. In questo lavoro abbiamo dimostrato che è possibile indurre, in vitro, la generazione di MDSC umane a partire da precursori midollari coltivati in presenza di diversi fattori solubili, tra i quali il G-CSF ed il GM-CSF. Il nostro studio ha dimostrato che l’uso combinato di G-CSF e di GM-CSF permette di indurre l’accumulo di cellule mieloidi immature (BM-MDSC) con caratteristiche simili a quelle da noi identificate nel sangue di pazienti affetti da tumore. Le BM-MDSC sono in grado di inibire la proliferazione di linfociti T attivati sia con mitogeni che con allo-antigeni. Inoltre abbiamo dimostrato che la soppressione mediata dalle BM-MDSC è associata sia alla diminuzione dell’espressione delle catene ζ ed ε del CD3 che alla riduzione della produzione di IFN-γ secreto dagli stessi linfociti T. Considerando l’elevata eterogeneità delle BM-MDSC, in questo lavoro abbiamo cercato di identificare quali sottopopolazioni di BM-MDSC fossero responsabili dall’attività soppressoria. Mediante esperimenti di sorting cellulare abbiamo dimostrato, che le BM-MDSC sono cellule immature ascrivibili ad un preciso stadio di differenziazione. Queste cellule, definite dal fenotipo CD16-/CD11blow/-, presentano infatti caratteristiche morfologiche simili ai promielociti isolati dal midollo ex-vivo ma, a differenza di queste, sono caratterizzate da una minore granulosità, da maggiori dimensioni e dalla capacità si sopprimere la proliferazione linfocitaria accompagnata anche dalla diminuzione dell’espressione della catena ε del CD3 espressa sulla superficie dei linfociti T. Abbiamo inoltre evidenziato l’eterogeneità di questa frazione dimostrando che, al suo interno, si possono identificare altre due sottopopolazioni caratterizzate da una diversa fluorescenza nella lunghezza d’onda del rosso, da una diversa granulosità e da una diversa attività soppressoria. Nella seconda parte del lavoro ci siamo concentrati sulla valutazione degli effetti della chemioterapia sull’accumulo e sulla funzionalità delle MDSC, una delle principali popolazioni cellulari coinvolte nell’immunosoppressione associata ai tumori e responsabili dell’inefficacia delle terapie immunoterapiche. I dati da noi ottenuti dimostrano che, come osservato nel modello murino, l’aggiunta del 5-fluorouracile a basse dosi è in grado di indurre l’eliminazione dell’attività soppressoria delle BM-MDSC nei confronti dei linfociti T. Queste osservazioni permettono di suggerire il possibile utilizzo di alcuni chemioterapici come adiuvanti nei trattamenti immunoterapici, in quanto in grado di eliminare una delle popolazioni coinvolte nell’immunosoppressione associata ai tumori.
Schlecker, Eva [Verfasser], i Viktor [Akademischer Betreuer] Umansky. "The role of tumor-infiltrating MDSC subsets in tumor progression / Eva Schlecker ; Betreuer: Viktor Umansky". Heidelberg : Universitätsbibliothek Heidelberg, 2011. http://d-nb.info/1179229649/34.
Pełny tekst źródłaWang, Ninghua. "Evidence for the Intermediate Phase in Bulk (K2O)x(GeO2)1-x glasses and its consequences on Electrical and Thermal Properties". University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1187020710.
Pełny tekst źródłaWeber, Rebekka Renate [Verfasser], i Viktor [Akademischer Betreuer] Umansky. "Regulation of CCR5 expression and immunosuppressive phenotype of MDSC in melanoma / Rebekka Renate Weber ; Betreuer: Viktor Umansky". Heidelberg : Universitätsbibliothek Heidelberg, 2020. http://d-nb.info/1203716168/34.
Pełny tekst źródłaKsiążki na temat "MDSC"
Massachusetts. Metropolitan District Commission. Division of Parks and Recreation. MDC bikepaths. Boston: MDC, Division of Parks and Recreation, 1986.
Znajdź pełny tekst źródłaByrne, Dorena Orlagh. Data warehousing within MDS Harris. [s.l: The author], 1999.
Znajdź pełny tekst źródłaResti, Benedetto Marino Di. Libro dei conti (MDXC-MDCV). Sofii︠a︡: Glavno upravlenie na arkhivite pri Ministerskii︠a︡ suvet, 2004.
Znajdź pełny tekst źródłaResti, Benedetto Marino Di. Libro dei conti (MDXC-MDCV). Sofii︠a︡: Glavno upravlenie na arkhivite pri Ministerskii︠a︡ suvet, 2004.
Znajdź pełny tekst źródłaHopp, Julia. The MDS troubleshooter. Wyd. 2. Marblehead, MA: Opus Communications, 2002.
Znajdź pełny tekst źródłaHopp, Julia. The MDS troubleshooter. Wyd. 3. Marblehead, MA: HCPro, 2006.
Znajdź pełny tekst źródłaI, Cofer Jennifer, red. The MDS troubleshooter. Marblehead, MA: Opus Communications, 2000.
Znajdź pełny tekst źródłaThe MDC Shay handbook. Arlington, Wash: Oso Pub. Co., 1997.
Znajdź pełny tekst źródłaThe MDS coordinator's field guide. Marblehead, MA: HCPro, 2007.
Znajdź pełny tekst źródłaMartin, Dalton &. Spettel CPA Review Course LLC. MDS CPA review: Business law. [Columbus]: Martin, Dalton & Spettel CPA Review Course, LLC, 2000.
Znajdź pełny tekst źródłaCzęści książek na temat "MDSC"
Escors, David, i Grazyna Kochan. "Ex Vivo MDSC Differentiation Models". W Myeloid-Derived Suppressor Cells and Cancer, 49–59. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26821-7_4.
Pełny tekst źródłaShibata, Masahiko, Kenji Gonda i Seiichi Takenoshita. "MDSC: Myeloid-Derived Suppressor Cells". W Immunotherapy of Cancer, 323–34. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55031-0_22.
Pełny tekst źródłaEhrenstein, Gottfried Wilhelm. "Dynamische Differenzkalorimetrie (DDK, DSC, MDSC)". W Thermische Analyse, 43–80. München: Carl Hanser Verlag GmbH & Co. KG, 2020. http://dx.doi.org/10.3139/9783446464247.003.
Pełny tekst źródłaDe Meuter, P., H. Rahier i B. Van Mele. "Recrystallisation of starch studied with MDSC". W Hot Topics in Thermal Analysis and Calorimetry, 49–68. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2219-0_3.
Pełny tekst źródłaSvider, Peter, Shu-Hsia Chen, Andrew G. Sikora i Wen-Chin Yang. "Programming of MDSC: New Opportunities for Targeted Therapy". W The Tumor Immunoenvironment, 567–84. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6217-6_24.
Pełny tekst źródłaSanchez-Pino, Maria Dulfary. "Detection of Circulating and Tissue Myeloid-Derived Suppressor Cells (MDSC) by Flow Cytometry". W Methods in Molecular Biology, 247–61. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1948-3_17.
Pełny tekst źródłaBruderek, Kirsten, Ronja Schirrmann i Sven Brandau. "Immunophenotyping of Circulating Myeloid-Derived Suppressor Cells (MDSC) in the Peripheral Blood of Cancer Patients". W Methods in Molecular Biology, 1–7. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-1060-2_1.
Pełny tekst źródłaKochan, Grazyna. "Human MDSCs". W Myeloid-Derived Suppressor Cells and Cancer, 39–48. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26821-7_3.
Pełny tekst źródłaBrambilla, Marco, Jordi Cabot i Manuel Wimmer. "MDSE Principles". W Model-Driven Software Engineering in Practice, 7–24. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-031-02546-4_2.
Pełny tekst źródłaOette, Mark, Marvin J. Stone, Hendrik P. N. Scholl, Peter Charbel Issa, Monika Fleckenstein, Steffen Schmitz-Valckenberg, Frank G. Holz i in. "MDS". W Encyclopedia of Molecular Mechanisms of Disease, 1270. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_6247.
Pełny tekst źródłaStreszczenia konferencji na temat "MDSC"
Balouek-Thomert, Daniel, Pedro Silva, Kevin Fauvel, Alexandru Costan, Gabriel Antoniu i Manish Parashar. "MDSC". W UCC '21: 2021 IEEE/ACM 14th International Conference on Utility and Cloud Computing. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3492323.3495590.
Pełny tekst źródłaCassino, Theresa R., Masaho Okada, Lauren Drowley, Johnny Huard i Philip R. LeDuc. "Mechanical Stimulation Improves Muscle-Derived Stem Cell Transplantation for Cardiac Repair". W ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192941.
Pełny tekst źródłaHuang., Chin-NIng. "Abstract 755: Antagonistic effect of M-MDSC and N-MDSC during astrocytoma progression". W Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-755.
Pełny tekst źródłaCassino, Theresa R., Masaho Okada, Lauren M. Drowley, Joseph Feduska, Johnny Huard i Philip R. LeDuc. "Using Mechanical Environment to Enhance Stem Cell Transplantation in Muscle Regeneration". W ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176545.
Pełny tekst źródłaHunnicutt, Ray, i David Garza. "Mission Data Storage Consolidation (MDSC)". W SpaceOps 2002 Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-t2-71.
Pełny tekst źródłaCole, Kathryn, Holly Britton, Phyllis Warkentin i James E. Talmadge. "Abstract 5714: SPADE identification of novel MDSC subsets". W Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-5714.
Pełny tekst źródłaCalvert, Ryan D., James C. Fleet, Ye Chen, Alex Pothen, Bartek Rajwa, Pierrick G. Fournier, Patricia Juarez, Theresa A. Guise, Timothy L. Ratliff i Ben D. Elzey. "Abstract 4741: Monocytic myeloid derived suppressor cells (M-MDSC) from spleen are multipotent while tumor M-MDSC have limited plasticity". W Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-4741.
Pełny tekst źródłaParker, Katherine, Suzanne Rosenberg, Pratima Sinha, Huan Yang, Kevin Tracey i Jianhua Li. "Abstract 461: Inhibition of HMGB1 delays tumor progression, reduces MDSC-mediated immune suppression, and diminishes MDSC-macrophage cross-talk interaction." W Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-461.
Pełny tekst źródłaBryant, A. J., C. Fu, Y. Lu, M. Williams, M. Brantly i E. Scott. "Endothelial Inflammatory Signaling Suppresses MDSC-Mediated Pulmonary Vascular Remodeling". W American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a5282.
Pełny tekst źródłaHashimoto, Ayumi, Vinit Kumar, Peter Ordentlich i Dmitry I. Gabrilovich. "Abstract 5595: HDAC inhibitor Entinostat disrupts function of PMN-MDSC". W Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-5595.
Pełny tekst źródłaRaporty organizacyjne na temat "MDSC"
Story, Natasha Claire. Investigating the Thermal Behavior of Polymers by Modulated Differential Scanning Calorimetry (MDSC) – A Review. Office of Scientific and Technical Information (OSTI), czerwiec 2020. http://dx.doi.org/10.2172/1633549.
Pełny tekst źródłaSchembri, Philip, i Jillian Adams. LANL MDMC Member Update: Summer 2020. Office of Scientific and Technical Information (OSTI), lipiec 2020. http://dx.doi.org/10.2172/1643904.
Pełny tekst źródłaSchembri, Philip. LANL Member Update for the 41st MDMC. Office of Scientific and Technical Information (OSTI), luty 2023. http://dx.doi.org/10.2172/1923626.
Pełny tekst źródłaBailey, Marcus, Lening Rivera, Alex Altunes i Angela Walters. 5 years of lessons via MDSGC Payloads at Capitol. Ames (Iowa): Iowa State University. Library. Digital Press, styczeń 2018. http://dx.doi.org/10.31274/ahac.11071.
Pełny tekst źródłaRao, Shuyun. Study of Rpl22 in MDS and AML. Fort Belvoir, VA: Defense Technical Information Center, październik 2014. http://dx.doi.org/10.21236/ada613241.
Pełny tekst źródłaEl-Rayes, Khaled, i Ernest-John Ignacio. Evaluating the Benefits of Implementing Mobile Road Weather Information Sensors. Illinois Center for Transportation, luty 2022. http://dx.doi.org/10.36501/0197-9191/22-004.
Pełny tekst źródłaPrecoda, K., i T. Meng. Long-term Stability of Listening Strategies Determined by MDS. Fort Belvoir, VA: Defense Technical Information Center, maj 1998. http://dx.doi.org/10.21236/ada357785.
Pełny tekst źródłaShelley, John, Christopher Haring i Nathan Chrisman. Evaluation of cedar tree revetments for bank stabilization at the Locust Creek Conservation Area, Missouri : quantifying bank erosion volumes from preproject to postfailure. Engineer Research and Development Center (U.S.), grudzień 2022. http://dx.doi.org/10.21079/11681/46144.
Pełny tekst źródłaVerma, Amit. Meta-Analytical Online Repository of Gene Expression Profiles of MDS Stem Cells. Fort Belvoir, VA: Defense Technical Information Center, październik 2013. http://dx.doi.org/10.21236/ada603210.
Pełny tekst źródłaGuan, X., i E. C. Uberbacher. A multiple divide-and-conquer (MDC) algorithm for optimal alignments in linear space. Office of Scientific and Technical Information (OSTI), czerwiec 1994. http://dx.doi.org/10.2172/10168027.
Pełny tekst źródła