Gotowa bibliografia na temat „Maxwells wave equation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Maxwells wave equation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Maxwells wave equation"
Sugaya, R. "Momentum-space diffusion due to resonant wave–wave scattering of electromagnetic and electrostatic waves in a relativistic magnetized plasma". Journal of Plasma Physics 56, nr 2 (październik 1996): 193–207. http://dx.doi.org/10.1017/s0022377800019206.
Pełny tekst źródłaVegt, Wim. "4-Dimensional Relativistic Quantum Mechanical Equilibrium in Gravitational-Electromagnetic Confinements". International Science Review 1, nr 2 (21.11.2020): 34–61. http://dx.doi.org/10.47285/isr.v1i2.59.
Pełny tekst źródłaSugaya, Reiji. "Velocity-space diffusion due to resonant wave–wave scattering of electromagnetic and electrostatic waves in a plasma". Journal of Plasma Physics 45, nr 1 (luty 1991): 103–13. http://dx.doi.org/10.1017/s002237780001552x.
Pełny tekst źródłaVegt, Wim. "The Illusion of Quantum Mechanical Probability Waves". European Journal of Engineering Research and Science 5, nr 10 (11.10.2020): 1212–24. http://dx.doi.org/10.24018/ejers.2020.5.10.2153.
Pełny tekst źródłaVegt, Wim. "The Illusion of Quantum Mechanical Probability Waves". European Journal of Engineering and Technology Research 5, nr 10 (11.10.2020): 1212–24. http://dx.doi.org/10.24018/ejeng.2020.5.10.2153.
Pełny tekst źródłaSALTI, MUSTAFA, i ALI HAVARE. "ON THE EQUIVALENCE OF THE MASSLESS DKP EQUATION AND THE MAXWELL EQUATIONS IN THE SHUWER". Modern Physics Letters A 20, nr 06 (28.02.2005): 451–65. http://dx.doi.org/10.1142/s0217732305015768.
Pełny tekst źródłaGevorkyan E. A. "Transverse components of the electromagnetic field in a waveguide with modulated in space and in time magnetodielectric filling". Optics and Spectroscopy 130, nr 10 (2022): 1293. http://dx.doi.org/10.21883/eos.2022.10.54865.3813-22.
Pełny tekst źródłaBruce, S. A. "Maxwell-Like Equations for Free Dirac Electrons". Zeitschrift für Naturforschung A 73, nr 4 (28.03.2018): 331–35. http://dx.doi.org/10.1515/zna-2017-0328.
Pełny tekst źródłaLi, Qingsong, i Simon Maher. "Deriving an Electric Wave Equation from Weber’s Electrodynamics". Foundations 3, nr 2 (7.06.2023): 323–34. http://dx.doi.org/10.3390/foundations3020024.
Pełny tekst źródłaFedele, Renato. "From Maxwell's theory of Saturn's rings to the negative mass instability". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, nr 1871 (25.01.2008): 1717–33. http://dx.doi.org/10.1098/rsta.2007.2181.
Pełny tekst źródłaRozprawy doktorskie na temat "Maxwells wave equation"
Azam, Md Ali. "Wave reflection from a lossy uniaxial media". Ohio : Ohio University, 1995. http://www.ohiolink.edu/etd/view.cgi?ohiou1179854582.
Pełny tekst źródłaOlivares, Nicole Michelle. "Accuracy of Wave Speeds Computed from the DPG and HDG Methods for Electromagnetic and Acoustic Waves". PDXScholar, 2016. http://pdxscholar.library.pdx.edu/open_access_etds/2920.
Pełny tekst źródłaStrohm, Christian. "Circuit Simulation Including Full-Wave Maxwell's Equations". Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22544.
Pełny tekst źródłaThis work is devoted to the simulation of electrical/electronic circuits incorporating electromagnetic devices. The focus is on different couplings of the circuit equations, modeled with the modified nodal analysis, and the electromagnetic devices with their refined model based on full-wave Maxwell's equations in Lorenz gauged A-V formulation which are spatially discretized by the finite integration technique. A numerical analysis extends the topological criteria for the index of the resulting differential-algebraic equations, as already derived in other works with similar field/circuit couplings. For the simulation, both a monolithic approach and waveform relaxation methods are investigated. The focus is on time integration, scaling methods, structural properties and a hybrid approach to solve the underlying linear systems of equations with the use of specialized solvers for the respective subsystems. Since the full-Maxwell approach causes additional derivatives in the coupling structure, previously existing convergence statements for the waveform relaxation of coupled differential-algebraic equations are not applicable and motivate a new convergence analysis. Based on this analysis, sufficient topological criteria are developed which guarantee convergence of Gauss-Seidel and Jacobi type waveform relaxation schemes for introduced coupled systems. Finally, numerical benchmarks are provided to support the introduced methods and theorems of this treatise.
Strohm, Christian [Verfasser]. "Circuit Simulation Including Full-Wave Maxwell's Equations / Christian Strohm". Berlin : Humboldt-Universität zu Berlin, 2021. http://d-nb.info/1229435077/34.
Pełny tekst źródłaXie, Zhongqiang. "Fourth-order finite difference methods for the time-domain Maxwell equations with applications to scattering by rough surfaces and interfaces". Thesis, Coventry University, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369842.
Pełny tekst źródłaWang, Jenn-Nan. "Inverse backscattering for acoustic and Maxwell's equations /". Thesis, Connect to this title online; UW restricted, 1997. http://hdl.handle.net/1773/5794.
Pełny tekst źródłaOrdovas, Miquel Roland. "Covariant projection finite elements for transient wave propagation". Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342285.
Pełny tekst źródłaFang, Fang, i Dinkoo Mehrdad. "Wave Energy of an Antenna in Matlab". Thesis, Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-16587.
Pełny tekst źródłaMarchand, Renier Gustav. "Fine element tearing and interconnecting for the electromagnetic vector wave equation in two dimensions /". Link to online version, 2007. http://hdl.handle.net/10019/363.
Pełny tekst źródłaCaldwell, Trevor. "Nonlinear Wave Equations and Solitary Wave Solutions in Mathematical Physics". Scholarship @ Claremont, 2012. https://scholarship.claremont.edu/hmc_theses/32.
Pełny tekst źródłaKsiążki na temat "Maxwells wave equation"
Fushchich, Vilʹgelʹm Ilʹich. Symmetries of Maxwell's equations. Dordrecht [Netherlands]: D. Reidel, 1987.
Znajdź pełny tekst źródłaTsutomu, Kitoh, red. Introduction to optical waveguide analysis: Solving Maxwell's equations and the Schrödinger equation. New York: J. Wiley, 2001.
Znajdź pełny tekst źródłaBécherrawy, Tamer. Electromagnetism: Maxwell equations, wave propagation, and emission. London, UK: Hoboken, NJ : John Wiley & Sons, Inc., 2012.
Znajdź pełny tekst źródłaKawano, Kenji. Introduction to Optical Waveguide Analysis. New York: John Wiley & Sons, Ltd., 2004.
Znajdź pełny tekst źródłaQuesada-Pérez, Manuel. From Maxwell's equations to free and guided electromagnetic waves: An introduction for first-year undergraduates. New York: Novinka, 2014.
Znajdź pełny tekst źródłaIdemen, M. Mithat. Discontinuities in the electromagnetic field. Hoboken, N.J: Wiley-IEEE Press, 2011.
Znajdź pełny tekst źródłaHaq, Qureshi A., i United States. National Aeronautics and Space Administration., red. Simulation of tunneLadder traveling-wave tube input/output coupler characteristics using MAFIA. [Washington, D.C.]: National Aeronautics and Space Administration, 1996.
Znajdź pełny tekst źródłaHarmuth, Henning F. Electromagnetic Signals: Reflection, Focusing, Distortion, and Their Practical Applications. Boston, MA: Springer US, 1999.
Znajdź pełny tekst źródłaN, Boules Raouf, i Hussain Malek G. M, red. Electromagnetic signals: Reflection, focusing, distortion, and their practical applications. New York: Kluwer Academic/Plenum Publishers, 1999.
Znajdź pełny tekst źródłaFeynman, Richard Phillips. Quantum electrodynamics. New York: Perseus Books, 1998.
Znajdź pełny tekst źródłaCzęści książek na temat "Maxwells wave equation"
Donnevert, Jürgen. "Wave Propagation". W Maxwell´s Equations, 133–61. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. http://dx.doi.org/10.1007/978-3-658-29376-5_5.
Pełny tekst źródłaGonzalez, Guillermo. "Maxwell's Equations". W Advanced Electromagnetic Wave Propagation Methods, 1–37. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003219729-1.
Pełny tekst źródłaKao, Ming-Seng, i Chieh-Fu Chang. "Maxwell’s Equations". W Understanding Electromagnetic Waves, 1–50. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45708-2_1.
Pełny tekst źródłaSeifert, Christian, Sascha Trostorff i Marcus Waurick. "The Fourier–Laplace Transformation and Material Law Operators". W Evolutionary Equations, 67–83. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-89397-2_5.
Pełny tekst źródłaBao, Gang, Aurelia Minut i Zhengfang Zhou. "Maxwell’s Equations in Nonlinear Biperiodic Structures". W Mathematical and Numerical Aspects of Wave Propagation WAVES 2003, 406–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55856-6_65.
Pełny tekst źródłaZohuri, Bahman. "Maxwell’s Equations—Generalization of Ampère-Maxwell’s Law". W Scalar Wave Driven Energy Applications, 123–76. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91023-9_2.
Pełny tekst źródłaCohen, Gary, Xavier Ferrieres, Peter Monk i Sébastien Pernet. "Mass-Lumped Edge Elements for the Lossy Maxwell’s Equations". W Mathematical and Numerical Aspects of Wave Propagation WAVES 2003, 383–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55856-6_61.
Pełny tekst źródłaEngström, Christian, Gerhard Kristensson, Daniel Sjöberg, David J. L. Wall i Niklas Wellander. "Homogenization of the Maxwell Equations Using Floquet-Bloch Decomposition". W Mathematical and Numerical Aspects of Wave Propagation WAVES 2003, 412–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55856-6_66.
Pełny tekst źródłaMickelson, Alan Rolf. "Maxwell’s Equations and Plane Wave Propagation". W Physical Optics, 7–87. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3530-0_2.
Pełny tekst źródłaSibley, Martin J. N. "Maxwell’s Equations and Electromagnetic Waves". W Introduction to Electromagnetism, 189–202. Wyd. 2. Second edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9780367462703-9.
Pełny tekst źródłaStreszczenia konferencji na temat "Maxwells wave equation"
Erikson, W. L., i Surendra Singh. "Maxwell-Gaussian optical beams". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.wa1.
Pełny tekst źródłaWarnick, K. F., i P. Russer. "Solving Maxwell's equations using fractional wave equations". W 2006 IEEE Antennas and Propagation Society International Symposium. IEEE, 2006. http://dx.doi.org/10.1109/aps.2006.1710682.
Pełny tekst źródłaKeller, Scott M., i Gregory P. Carman. "Plane wave dynamics in multiferroic materials using Maxwell's equations and equation of motion". W SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, redaktorzy Nakhiah C. Goulbourne i Zoubeida Ounaies. SPIE, 2012. http://dx.doi.org/10.1117/12.923595.
Pełny tekst źródłaChamorro-Posada, P., i G. S. McDonald. "From Maxwell’s Equations to Helmholtz Solitons". W Nonlinear Guided Waves and Their Applications. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/nlgw.2005.wd3.
Pełny tekst źródłaWei Sha, Xianliang Wu, Zhixiang Huang i Mingsheng Chen. "The symplectiness of Maxwell’s equations". W 2008 International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2008. http://dx.doi.org/10.1109/icmmt.2008.4540337.
Pełny tekst źródłaBlair, Steve, i Kelvin Wagner. "Generalized Higher-Order Nonlinear Evolution Equation for Multi-Dimensional Spatio-Temporal Propagation". W Nonlinear Guided Waves and Their Applications. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/nlgw.1998.nwe.17.
Pełny tekst źródłaFisher, A., D. White i G. Rodrigue. "A generalized mass lumping scheme for Maxwell's wave equation". W IEEE Antennas and Propagation Society Symposium, 2004. IEEE, 2004. http://dx.doi.org/10.1109/aps.2004.1330475.
Pełny tekst źródłaGoorjian, Peter M., Rose M. Joseph i Allen Taflove. "Calculations of Femtosecond Temporal Solitons and Spatial Solitons Using the Vector Maxwell's Equations". W Nonlinear Guided-Wave Phenomena. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/nlgwp.1993.tub.12.
Pełny tekst źródłaDOBREV, V. K., i S. T. PETROV. "Q-PLANE WAVE SOLUTIONS OF Q-MAXWELL EQUATIONS". W Proceedings of the Second International Symposium. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777850_0035.
Pełny tekst źródłaSchulze, A., A. Knorr i S. W. Koch. "Pulse Propagation and Many-body Effects in Semiconductor Four Wave Mixing". W Quantum Optoelectronics. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/qo.1995.qthe14.
Pełny tekst źródła