Artykuły w czasopismach na temat „Maximum power”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Maximum power.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Maximum power”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Francisco Coelho, Roberto, Walbermark Marques dos Santos i Denizar Cruz Martins. "INFLUENCE OF POWER CONVERTERS ON PV MAXIMUM POWER POINT TRACKING EFFICIENCY". Eletrônica de Potência 19, nr 1 (1.02.2014): 73–80. http://dx.doi.org/10.18618/rep.2014.1.073080.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Magagula, Sibonelo G. "Power Efficiency Optimization of Switched Reluctance Generator (SRG) Using Power Disturbance Maximum Power Point Tracking (MPPT)". International Journal of Computer and Electrical Engineering 9, nr 2 (2017): 445–54. http://dx.doi.org/10.17706/ijcee.2017.9.2.445-454.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Enrique, Juan Manuel, José Manuel Andújar, Eladio Durán i Miguel Angel Martínez. "Maximum power point tracker based on maximum power point resistance modeling". Progress in Photovoltaics: Research and Applications 23, nr 12 (21.05.2015): 1940–55. http://dx.doi.org/10.1002/pip.2620.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Youssef, Ayman, Mohamed El Telbany i Abdelhalim Zekry. "Reinforcement Learning for Online Maximum Power Point Tracking Control". Journal of Clean Energy Technologies 4, nr 4 (2015): 245–48. http://dx.doi.org/10.7763/jocet.2016.v4.290.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Drir, N., L. Barazane i M. Loudini. "Evaluation of Maximum Power Point Controllers in Photovoltaic System". International Journal of Environmental Science and Development 6, nr 4 (2015): 336–40. http://dx.doi.org/10.7763/ijesd.2015.v6.614.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Phong, Le Tien, Nguyen Minh Cuong, Thai Quang Vinh i Ngo Duc Minh. "Method to Harness Maximum Power from Photovoltaic Power Generation Basing on Completely Mathematical Model". International Journal of Research and Engineering 5, nr 8 (wrzesień 2018): 486–93. http://dx.doi.org/10.21276/ijre.2018.5.8.4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Ramkumar, P. V., R. S. Mishra i Aman Khurana. "Variation in Maximum Power and Maximum Power point with different parameter analysis". INTERNATIONAL JOURNAL OF ADVANCED PRODUCTION AND INDUSTRIAL ENGINEERING 3, nr 1 (25.01.2018): 33–35. http://dx.doi.org/10.35121/ijapie201801128.

Pełny tekst źródła
Streszczenie:
Variation in Maximum power and Maximum power point i.e. voltage at which Maximum Power is observed with different parameters are studied. Parameters are insolation, temperature, series resistance, shunt resistance, and reverse saturation current of the diode. For this I-V and P-V characteristics with a variation of these parameters are analyzed. For finding out the Maximum PowerPoint, Perturb & Observe technique is used. Variation in these points is different with each parameter. All simulation work is done in MATLAB.
Style APA, Harvard, Vancouver, ISO itp.
8

Kuperman, Alon, Moshe Averbukh i Simon Lineykin. "Maximum power point matching versus maximum power point tracking for solar generators". Renewable and Sustainable Energy Reviews 19 (marzec 2013): 11–17. http://dx.doi.org/10.1016/j.rser.2012.11.012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

THOMAS, GWENDOLYN A., WILLIAM J. KRAEMER, BARRY A. SPIERING, JEFF S. VOLEK, JEFFREY M. ANDERSON i CARL M. MARESH. "MAXIMAL POWER AT DIFFERENT PERCENTAGES OF ONE REPETITION MAXIMUM". Journal of Strength and Conditioning Research 21, nr 2 (maj 2007): 336–42. http://dx.doi.org/10.1519/00124278-200705000-00008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Hmurcik, L. V., i J. P. Micinilio. "Contrasts between maximum power transfer and maximum efficiency". Physics Teacher 24, nr 8 (listopad 1986): 492–93. http://dx.doi.org/10.1119/1.2342101.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Radcenco, Vsevolod, Elena Eugenia Vasilescu, Gheorghe Popescu i Valentin Apostol. "New approach to thermal power plants operation regimes maximum power versus maximum efficiency". International Journal of Thermal Sciences 46, nr 12 (grudzień 2007): 1259–66. http://dx.doi.org/10.1016/j.ijthermalsci.2007.01.022.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Wang, Tantan, Shumin Sun, Dechao Wan, Taiheng Shao i Hongzhao Wang. "Improved Photovoltaic Power Generation Maximum Power Tracking Method". IOP Conference Series: Materials Science and Engineering 452 (13.12.2018): 032111. http://dx.doi.org/10.1088/1757-899x/452/3/032111.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Leong, Chee-Hoi, Steven J. Elmer i James C. Martin. "Noncircular Chainrings Do Not Influence Maximum Cycling Power". Journal of Applied Biomechanics 33, nr 6 (1.12.2017): 410–18. http://dx.doi.org/10.1123/jab.2017-0035.

Pełny tekst źródła
Streszczenie:
Noncircular chainrings could increase cycling power by prolonging the powerful leg extension/flexion phases, and curtailing the low-power transition phases. We compared maximal cycling power-pedaling rate relationships, and joint-specific kinematics and powers across 3 chainring eccentricities (CON = 1.0; LOWecc = 1.13; HIGHecc = 1.24). Part I: Thirteen cyclists performed maximal inertial-load cycling under 3 chainring conditions. Maximum cycling power and optimal pedaling rate were determined. Part II: Ten cyclists performed maximal isokinetic cycling (120 rpm) under the same 3 chainring conditions. Pedal and joint-specific powers were determined using pedal forces and limb kinematics. Neither maximal cycling power nor optimal pedaling rate differed across chainring conditions (all p > .05). Peak ankle angular velocity for HIGHecc was less than CON (p < .05), while knee and hip angular velocities were unaffected. Self-selected ankle joint-center trajectory was more eccentric than HIGHecc with an opposite orientation that increased velocity during extension/flexion and reduced velocity during transitions. Joint-specific powers did not differ across chainring conditions, with a small increase in power absorbed during ankle dorsiflexion with HIGHecc. Multiple degrees of freedom in the leg, crank, and pedal system allowed cyclists to manipulate ankle angular velocity to maintain their preferred knee and hip actions, suggesting maximizing extension/flexion and minimizing transition phases may be counterproductive for maximal power.
Style APA, Harvard, Vancouver, ISO itp.
14

Velasco, S., J. M. M. Roco, A. Medina i A. Calvo Hernández. "Feynman's ratchet optimization: maximum power and maximum efficiency regimes". Journal of Physics D: Applied Physics 34, nr 6 (14.03.2001): 1000–1006. http://dx.doi.org/10.1088/0022-3727/34/6/323.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Sprague, Robert C., James C. Martin, Christopher J. Davidson, Bruce M. Wagner i Roger P. Farrar. "Short-Term Maximum Rowing Power". Medicine & Science in Sports & Exercise 36, Supplement (maj 2004): S168. http://dx.doi.org/10.1249/00005768-200405001-00803.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Rathore, T. S. "Generalized Maximum Power Transfer Theorem". IETE Journal of Education 58, nr 1 (2.01.2017): 39–41. http://dx.doi.org/10.1080/09747338.2017.1332496.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Sprague, Robert C., James C. Martin, Christopher J. Davidson, Bruce M. Wagner i Roger P. Farrar. "Short-Term Maximum Rowing Power". Medicine & Science in Sports & Exercise 36, Supplement (maj 2004): S168. http://dx.doi.org/10.1097/00005768-200405001-00803.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Wyatt, J. L. "Nonlinear dynamic maximum power theorem". IEEE Transactions on Circuits and Systems 35, nr 5 (maj 1988): 563–66. http://dx.doi.org/10.1109/31.1784.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Chen, Lin-An, Hui-Nien Hung i Chih-Rung Chen. "Maximum Average-Power (MAP) Tests". Communications in Statistics - Theory and Methods 36, nr 12 (4.09.2007): 2237–49. http://dx.doi.org/10.1080/03610920701215480.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Heald, Mark A. "Maximum power transfer vs. efficiency". Physics Teacher 26, nr 1 (styczeń 1988): 10. http://dx.doi.org/10.1119/1.2342404.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Bejan, Adrian. "Maximum power from fluid flow". International Journal of Heat and Mass Transfer 39, nr 6 (kwiecień 1996): 1175–81. http://dx.doi.org/10.1016/0017-9310(95)00209-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Shoukat, Ahmad Adnan, Adnan Aslam Noon, Muhammad Anwar, Hafiz Waqar Ahmed, Talha Irfan Khan, Hasan Koten, Muftooh Ur Rehman Siddiqi i Aamer Sharif. "Blades Optimization for Maximum Power Output of Vertical Axis Wind Turbine". International Journal of Renewable Energy Development 10, nr 3 (12.03.2021): 585–95. http://dx.doi.org/10.14710/ijred.2021.35530.

Pełny tekst źródła
Streszczenie:
Wind power is a significant and urging sustainable power source asset to petroleum derivatives. Wind machines, for example, H-Darrieus vertical pivot wind turbines (VAWTs) have increased much notoriety in research network throughout the most recent couple of decades because of their applications at destinations having moderately low wind speed. Be that as it may, it is noticed that such wind turbines have low effectiveness. The point of this examination is to plan rotor cutting edges which could create most extreme power yield and execution. Different plan factors, for instance, harmony length, pitch edge, rotor distance across, cutting edge length and pitch point are explored to upgrade the presentation of VAWT. Rotor cutting edges are manufactured using the NACA-0030 structure and tried in wind burrow office and contrast its outcomes and DSM 523 profile. Numerical simulations are performed to get best geometry and stream conduct for achieving greatest power. It is seen that for higher tip-speed-proportion (TSR), shorter harmony length and bigger distance across the rotor (i.e., lower robustness) yields higher effectiveness in NACA 0030. Nevertheless, for lower TSR, the more drawn out agreement length and slighter distance across rotor (i.e., higher strength) gives better implementation. The pitch point is - 2° for TSR = 3 and - 3° for TSR = 2.5. The most extreme power yield of the wind turbine is acquired for the sharp edge profile NACA 0030. Besides, instantaneous control coefficient, power coefficient (CP) is the greatest reason for azimuthal edge of 245° and least esteem for 180°.
Style APA, Harvard, Vancouver, ISO itp.
23

Cabral Cavalcanti, Marcelo, Kleber Carneiro de Oliveira, Gustavo Medeiros de Souza Azevedo i Francisco de Assis dos Santos Neves. "Comparative Study Of Maximum Power Point Tracking Techniques For Photovoltaic Systems". Eletrônica de Potência 12, nr 2 (1.07.2007): 163–71. http://dx.doi.org/10.18618/rep.2007.2.163171.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Kai Guo, Kai Guo, Xiaolin Wang Xiaolin Wang, Cheng Luo Cheng Luo, Pu Zhou Pu Zhou i Bohong Shu Bohong Shu. "Analysis of the maximum extractable power of photonic crystal fiber lasers". Chinese Optics Letters 12, s2 (2014): S21411–321414. http://dx.doi.org/10.3788/col201412.s21411.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Naick, Bhukya Krishna, Tarun Kumar Chatterjee i Kalyan Chatterjee. "Performance Analysis of Maximum Power Point Tracking Algorithms Under Varying Irradiation". International Journal of Renewable Energy Development 6, nr 1 (22.03.2017): 65–74. http://dx.doi.org/10.14710/ijred.6.1.65-74.

Pełny tekst źródła
Streszczenie:
Photovoltaic (PV) system is one of the reliable alternative sources of energy and its contribution in energy sector is growing rapidly. The performance of PV system depends upon the solar insolation, which will be varying throughout the day, season and year. The biggest challenge is to obtain the maximum power from PV array at varying insolation levels. The maximum power point tracking (MPPT) controller, in association with tracking algorithm will act as a principal element in driving the PV system at maximum power point (MPP). In this paper, the simulation model has been developed and the results were compared for perturb and observe, incremental conductance, extremum seeking control and fuzzy logic controller based MPPT algorithms at different irradiation levels on a 10 KW PV array. The results obtained were analysed in terms of convergence rate and their efficiency to track the MPP.Article History: Received 3rd Oct 2016; Received in revised form 6th January 2017; Accepted 10th February 2017; Available onlineHow to Cite This Article: Naick, B. K., Chatterjee, T. K. & Chatterjee, K. (2017) Performance Analysis of Maximum Power Point Tracking Algorithms Under Varying Irradiation. Int Journal of Renewable Energy Development, 6(1), 65-74.http://dx.doi.org/10.14710/ijred.6.1.65-74
Style APA, Harvard, Vancouver, ISO itp.
26

Wu, Chih. "Maximum obtainable power of a carnot combined power plant". Heat Recovery Systems and CHP 15, nr 4 (maj 1995): 351–55. http://dx.doi.org/10.1016/0890-4332(95)90004-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Leong, Chee Hoi, Steven J. Elmer i James C. Martin. "Noncircular Chainrings Do Not Improve Maximum Cycling Power and Joint-Specific Power during Maximal Cycling". Medicine & Science in Sports & Exercise 47 (maj 2015): 251–52. http://dx.doi.org/10.1249/01.mss.0000477111.05640.52.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Sheikh, Aabid Hussain, i Dr O. P. Malik. "Maximum Power Extraction Strategy for Wind Energy Conversion Systems using Intelligent Controllers". International Journal of Trend in Scientific Research and Development Volume-1, Issue-4 (30.06.2017): 580–84. http://dx.doi.org/10.31142/ijtsrd2213.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Rathore, T. S. "Conditions for the Maximum Power Transfer". IETE Journal of Education 54, nr 2 (lipiec 2013): 65–72. http://dx.doi.org/10.1080/09747338.2013.10876107.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Crenna, F., A. Palazzo i G. B. Rossi. "Power measurement in maximum height jump". Journal of Physics: Conference Series 1065 (sierpień 2018): 072031. http://dx.doi.org/10.1088/1742-6596/1065/7/072031.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Kanetsrom, Rakel Kristin, i Olav Egeland. "Maximum power absorption with active struts". Journal of Guidance, Control, and Dynamics 18, nr 4 (lipiec 1995): 907–8. http://dx.doi.org/10.2514/3.21476.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Cleuren, B., B. Rutten i C. Van den Broeck. "Universality of efficiency at maximum power". European Physical Journal Special Topics 224, nr 5 (lipiec 2015): 879–89. http://dx.doi.org/10.1140/epjst/e2015-02433-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Kormanyos, B. K., i G. M. Rebeiz. "Oscillator design for maximum added power". IEEE Microwave and Guided Wave Letters 4, nr 6 (czerwiec 1994): 205–7. http://dx.doi.org/10.1109/75.294294.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Fyali, Jibji-Bukar, i Anaya-Lara Olimpo. "Offline Photovoltaic Maximum Power Point Tracking". E3S Web of Conferences 64 (2018): 06007. http://dx.doi.org/10.1051/e3sconf/20186406007.

Pełny tekst źródła
Streszczenie:
As more renewable energy sources are connected to the electrical grid, it has become important that these sources participate in providing system support. It has become needful for grid-connected solar photovoltaics to participate in support functions like frequency support. However, photovoltaic systems need to implement a maximum power tracking algorithm to operate at maximum power and a method for de-loading photovoltaic systems is necessary for participation in frequency support. Some conventional maximum power tracking techniques are implemented in real time and will not adjust their output fast enough to provide system support while other may respond fast but are not very efficient in tracking the maximum power point of a photovoltaic system. This paper presents an offline method to estimate the maximum power voltage and current based on the characteristics of the photovoltaics module available in the datasheet and using the estimated values to operate the photovoltaics at maximum power. The performance of this technique is compared to the conventional technique. This paper also describes how the photovoltaic system can be de-loaded.
Style APA, Harvard, Vancouver, ISO itp.
35

Bejan, A., i M. R. Errera. "Maximum power from a hot stream". International Journal of Heat and Mass Transfer 41, nr 13 (lipiec 1998): 2025–35. http://dx.doi.org/10.1016/s0017-9310(97)00256-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Hall, Charles A. S. "The continuing importance of maximum power". Ecological Modelling 178, nr 1-2 (październik 2004): 107–13. http://dx.doi.org/10.1016/j.ecolmodel.2004.03.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Gordon, J. M., i Mahmoud Huleihil. "On optimizing maximum‐power heat engines". Journal of Applied Physics 69, nr 1 (styczeń 1991): 1–7. http://dx.doi.org/10.1063/1.347744.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Roy, S., P. P. Chakrabarti i P. Dasgupta. "Satisfiability Models for Maximum Transition Power". IEEE Transactions on Very Large Scale Integration (VLSI) Systems 16, nr 8 (sierpień 2008): 941–51. http://dx.doi.org/10.1109/tvlsi.2008.2000322.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Kong, C. S. "A general maximum power transfer theorem". IEEE Transactions on Education 38, nr 3 (1995): 296–98. http://dx.doi.org/10.1109/13.406510.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Prasanth Ram, J., i N. Rajasekar. "A Novel Flower Pollination Based Global Maximum Power Point Method for Solar Maximum Power Point Tracking". IEEE Transactions on Power Electronics 32, nr 11 (listopad 2017): 8486–99. http://dx.doi.org/10.1109/tpel.2016.2645449.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Chen, Lingen, Junlin Zheng, Fengrui Sun i Chih Wu. "Performance comparison of an irreversible closed Brayton cycle under maximum power density and maximum power conditions". Exergy, An International Journal 2, nr 4 (styczeń 2002): 345–51. http://dx.doi.org/10.1016/s1164-0235(02)00070-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Makino, T., J. D. Evans i G. Mak. "Maximum output power and maximum operating temperature of quantum well lasers". Applied Physics Letters 71, nr 20 (17.11.1997): 2871–73. http://dx.doi.org/10.1063/1.120201.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Salas, N. Sánchez, i A. Calvo Hernández. "Nonlinear systems rectifying thermal fluctuations: maximum power and maximum efficiency regimes". Journal of Physics D: Applied Physics 35, nr 12 (6.06.2002): 1442–46. http://dx.doi.org/10.1088/0022-3727/35/12/324.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Chen, Wei Min, Shuang Chen, Nan Xie i Hui Cai. "Researched on Maximum Power Point Tracking of PV Power System". Applied Mechanics and Materials 229-231 (listopad 2012): 1009–12. http://dx.doi.org/10.4028/www.scientific.net/amm.229-231.1009.

Pełny tekst źródła
Streszczenie:
To the oscillation and misjudgment problem of the traditional perturbation and observation algorithm, a novel three-point comparison method was proposed. This method applied Constant Voltage Tracking (CVT) method and variable-step perturbation method to solve the problem between tracking accuracy and speed, and applied double-direction perturbation method to make sure the reliability of action to avoid the misjudgment when external conditions fast changing. Restraining the oscillation near the maximum power point effectively was another merit of this proposed method. Finally, the experimental results demonstrate effectiveness of proposed method with PV experimental platform.
Style APA, Harvard, Vancouver, ISO itp.
45

AHN, Chang Wook, Ju Yeop CHOI, Dong-Ha LEE i Jinung AN. "Adaptive Maximum Power Point Tracking Algorithm for Photovoltaic Power Systems". IEICE Transactions on Communications E93-B, nr 5 (2010): 1334–37. http://dx.doi.org/10.1587/transcom.e93.b.1334.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Liu, Yuewen. "Design of Maximum Power Tracking System for Photovoltaic Power Generation". Journal of Physics: Conference Series 2076, nr 1 (1.11.2021): 012119. http://dx.doi.org/10.1088/1742-6596/2076/1/012119.

Pełny tekst źródła
Streszczenie:
Abstract Solar power generation is related to climatic conditions, and its high cost and low power generation efficiency have become the main factors restricting its development. Realizing the maximum power tracking of solar photovoltaic power generation through power electronic technology and control technology is an effective measure to increase the power generation of photovoltaic power generation systems, reduce power generation costs, improve solar energy conversion efficiency, and widely promote photovoltaic power generation technology. According to the illumination characteristics of solar cells, using a single-chip microcomputer to control the DC-DC converter and conductance increment method as the control algorithm, a solar maximum power tracking system is designed.
Style APA, Harvard, Vancouver, ISO itp.
47

Du, Guifu, Dongliang Zhang, Guoxin Li, Yihua Hu, Yang Liu, Chonglin Wang i Jianhua Liu. "Maximum Safety Regenerative Power Tracking for DC Traction Power Systems". Energies 10, nr 2 (17.02.2017): 244. http://dx.doi.org/10.3390/en10020244.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Ait‐Ali, Mohand A. "Maximum power and thermal efficiency of an irreversible power cycle". Journal of Applied Physics 78, nr 7 (październik 1995): 4313–18. http://dx.doi.org/10.1063/1.359834.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Szarka, Gyorgy D., Stephen G. Burrow, Plamen P. Proynov i Bernard H. Stark. "Maximum Power Transfer Tracking for Ultralow-Power Electromagnetic Energy Harvesters". IEEE Transactions on Power Electronics 29, nr 1 (styczeń 2014): 201–12. http://dx.doi.org/10.1109/tpel.2013.2251427.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Huang, Yue Hua, Huan Huan Li i Guang Xu Li. "Maximum Wind Power Tracking Strategy of Wind Power Generation System". Applied Mechanics and Materials 313-314 (marzec 2013): 813–16. http://dx.doi.org/10.4028/www.scientific.net/amm.313-314.813.

Pełny tekst źródła
Streszczenie:
Aiming at maximum wind power tracking control problem of wind power generation system below the rated wind speed, this paper presents an improved MPPT control strategy by using turbulent part of the wind speed as a search signal to find the maximum power point. By using the Matlab/Simulink simulation of the wind power generation system below the rated wind speed, this paper proves the effectiveness of this control strategy. The simulation results show that improved MPPT control strategy can well control the wind turbine speed to track the wind speed changes to maintain optimum tip speed ratio and the maximum power coefficient.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii