Rozprawy doktorskie na temat „Matrix linear regression”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 16 najlepszych rozpraw doktorskich naukowych na temat „Matrix linear regression”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Kuljus, Kristi. "Rank Estimation in Elliptical Models : Estimation of Structured Rank Covariance Matrices and Asymptotics for Heteroscedastic Linear Regression". Doctoral thesis, Uppsala universitet, Matematisk statistik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9305.
Pełny tekst źródłaShrewsbury, John Stephen. "Calibration of trip distribution by generalised linear models". Thesis, University of Canterbury. Department of Civil and Natuaral Resources Engineering, 2012. http://hdl.handle.net/10092/7685.
Pełny tekst źródłaWang, Shuo. "An Improved Meta-analysis for Analyzing Cylindrical-type Time Series Data with Applications to Forecasting Problem in Environmental Study". Digital WPI, 2015. https://digitalcommons.wpi.edu/etd-theses/386.
Pełny tekst źródłaKim, Jingu. "Nonnegative matrix and tensor factorizations, least squares problems, and applications". Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42909.
Pełny tekst źródłaNasseri, Sahand. "Application of an Improved Transition Probability Matrix Based Crack Rating Prediction Methodology in Florida’s Highway Network". Scholar Commons, 2008. https://scholarcommons.usf.edu/etd/424.
Pełny tekst źródłaКір’ян, М. П. "Веб-система загальноосвітноьої школи з використанням алгоритму оцінювання та збору статистики". Master's thesis, Сумський державний університет, 2019. http://essuir.sumdu.edu.ua/handle/123456789/76750.
Pełny tekst źródłaBettache, Nayel. "Matrix-valued Time Series in High Dimension". Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAG002.
Pełny tekst źródłaThe objective of this thesis is to model matrix-valued time series in a high-dimensional framework. To this end, the entire study is presented in a non-asymptotic framework. We first provide a test procedure capable of distinguishing whether the covariance matrix of centered random vectors with centered stationary distribution is equal to the identity or has a sparse Toeplitz structure. Secondly, we propose an extension of low-rank matrix linear regression to a regression model with two matrix-parameters which create correlations between the rows and he columns of the output random matrix. Finally, we introduce and estimate a dynamic topic model where the expected value of the observations is factorizes into a static matrix and a time-dependent matrix following a simplex-valued auto-regressive process of order one
Žiupsnys, Giedrius. "Klientų duomenų valdymas bankininkystėje". Master's thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2010~D_20110709_152442-86545.
Pełny tekst źródłaThis work is about analysing regularities in bank clients historical credit data. So first of all bank information repositories are analyzed to comprehend banks data. Then using data mining algorithms and software for bank data sets, which describes credit repayment history, clients insolvency risk is being tried to estimate. So first step in analyzis is information preprocessing for data mining. Later various classification algorithms is used to make models wich classify our data sets and help to identify insolvent clients as accurate as possible. Besides clasiffication, regression algorithms are analyzed and prediction models are created. These models help to estimate how long client are late to pay deposit. So when researches have been done data marts and data flow schema are presented. Also classification and regressions algorithms and models, which shows best estimation results for our data sets, are introduced.
NÓBREGA, Caio Santos Bezerra. "Uma estratégia para predição da taxa de aprendizagem do gradiente descendente para aceleração da fatoração de matrizes". Universidade Federal de Campina Grande, 2014. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/362.
Pełny tekst źródłaMade available in DSpace on 2018-04-11T14:50:08Z (GMT). No. of bitstreams: 1 CAIO SANTOS BEZERRA NÓBREGA - DISSERTAÇÃO PPGCC 2014..pdf: 983246 bytes, checksum: 5eca7651706ce317dc514ec2f1aa10c3 (MD5) Previous issue date: 2014-07-30
Capes
Sugerir os produtos mais apropriados aos diversos tipos de consumidores não é uma tarefa trivial, apesar de ser um fator chave para aumentar satisfação e lealdade destes. Devido a esse fato, sistemas de recomendação têm se tornado uma ferramenta importante para diversas aplicações, tais como, comércio eletrônico, sites personalizados e redes sociais. Recentemente, a fatoração de matrizes se tornou a técnica mais bem sucedida de implementação de sistemas de recomendação. Os parâmetros do modelo de fatoração de matrizes são tipicamente aprendidos por meio de métodos numéricos, tal como o gradiente descendente. O desempenho do gradiente descendente está diretamente relacionada à configuração da taxa de aprendizagem, a qual é tipicamente configurada para valores pequenos, com o objetivo de não perder um mínimo local. Consequentemente, o algoritmo pode levar várias iterações para convergir. Idealmente,é desejada uma taxa de aprendizagem que conduza a um mínimo local nas primeiras iterações, mas isto é muito difícil de ser realizado dada a alta complexidade do espaço de valores a serem pesquisados. Começando com um estudo exploratório em várias bases de dados de sistemas de recomendação, observamos que, para a maioria das bases, há um padrão linear entre a taxa de aprendizagem e o número de iterações necessárias para atingir a convergência. A partir disso, propomos utilizar modelos de regressão lineares simples para predizer, para uma base de dados desconhecida, um bom valor para a taxa de aprendizagem inicial. A ideia é estimar uma taxa de aprendizagem que conduza o gradiente descendenteaummínimolocalnasprimeirasiterações. Avaliamosnossatécnicaem8bases desistemasderecomendaçãoreaisecomparamoscomoalgoritmopadrão,oqualutilizaum valorfixoparaataxadeaprendizagem,ecomtécnicasqueadaptamataxadeaprendizagem extraídas da literatura. Nós mostramos que conseguimos reduzir o número de iterações até em 40% quando comparados à abordagem padrão.
Suggesting the most suitable products to different types of consumers is not a trivial task, despite being a key factor for increasing their satisfaction and loyalty. Due to this fact, recommender systems have be come an important tool for many applications, such as e-commerce, personalized websites and social networks. Recently, Matrix Factorization has become the most successful technique to implement recommendation systems. The parameters of this model are typically learned by means of numerical methods, like the gradient descent. The performance of the gradient descent is directly related to the configuration of the learning rate, which is typically set to small values, in order to do not miss a local minimum. As a consequence, the algorithm may take several iterations to converge. Ideally, one wants to find a learning rate that will lead to a local minimum in the early iterations, but this is very difficult to achieve given the high complexity of search space. Starting with an exploratory study on several recommendation systems datasets, we observed that there is an over all linear relationship between the learnin grate and the number of iterations needed until convergence. From this, we propose to use simple linear regression models to predict, for a unknown dataset, a good value for an initial learning rate. The idea is to estimate a learning rate that drives the gradient descent as close as possible to a local minimum in the first iteration. We evaluate our technique on 8 real-world recommender datasets and compared it with the standard Matrix Factorization learning algorithm, which uses a fixed value for the learning rate over all iterations, and techniques fromt he literature that adapt the learning rate. We show that we can reduce the number of iterations until at 40% compared to the standard approach.
Cavalcanti, Alexsandro Bezerra. "Aperfeiçoamento de métodos estatísticos em modelos de regressão da família exponencial". Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-05082009-170043/.
Pełny tekst źródłaIn this work, we develop three topics related to the exponential family nonlinear regression. First, we obtain the asymptotic covariance matrix of order $n^$, where $n$ is the sample size, for the maximum likelihood estimators corrected by the bias of order $n^$ in generalized linear models, considering the precision parameter known. Second, we calculate an asymptotic formula of order $n^{-1/2}$ for the skewness of the distribution of the maximum likelihood estimators of the mean parameters and of the precision and dispersion parameters in exponential family nonlinear models considering that the dispersion parameter is the same although unknown for all observations. Finally, we obtain Bartlett-type correction factors for the score test in exponential family nonlinear models assuming that the precision parameter is modelled by covariates. Monte Carlo simulation studies are developed to evaluate the results obtained in the three topics.
Söderberg, Max Joel, i Axel Meurling. "Feature selection in short-term load forecasting". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259692.
Pełny tekst źródłaI denna rapport undersöks korrelation och betydelsen av olika attribut för att förutspå energiförbrukning 24 timmar framåt. Attributen härstammar från tre kategorier: väder, tid och tidigare energiförbrukning. Korrelationerna tas fram genom att utföra Pearson Correlation och Mutual Information. Detta resulterade i att de högst korrelerade attributen var de som representerar tidigare energiförbrukning, följt av temperatur och månad. Två identiska attributmängder erhölls genom att ranka attributen över korrelation. Tre attributmängder skapades manuellt. Den första mängden innehåll sju attribut som representerade tidigare energiförbrukning, en för varje dag, sju dagar innan datumet för prognosen av energiförbrukning. Den andra mängden bestod av väderoch tidsattribut. Den tredje mängden bestod av alla attribut från den första och andra mängden. Dessa mängder jämfördes sedan med hjälp av olika maskininlärningsmodeller. Resultaten visade att mängden med alla attribut och den med tidigare energiförbrukning gav bäst resultat för samtliga modeller.
Fridgeirsdottir, Gudrun A. "The development of a multiple linear regression model for aiding formulation development of solid dispersions". Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/52176/.
Pełny tekst źródłaTomek, Peter. "Approximation of Terrain Data Utilizing Splines". Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2012. http://www.nusl.cz/ntk/nusl-236488.
Pełny tekst źródłaWinkler, Anderson M. "Widening the applicability of permutation inference". Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:ce166876-0aa3-449e-8496-f28bf189960c.
Pełny tekst źródłaVLČKOVÁ, Miroslava. "Kvalita účetních dat v řízení podniku". Doctoral thesis, 2014. http://www.nusl.cz/ntk/nusl-177497.
Pełny tekst źródłaHoráček, Jaroslav. "Intervalové lineární a nelineární systémy". Doctoral thesis, 2019. http://www.nusl.cz/ntk/nusl-408132.
Pełny tekst źródła