Gotowa bibliografia na temat „Mathematical thinking”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Mathematical thinking”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Mathematical thinking"

1

Moiseienko, Lidiia, i Liubov Shehda. "Dependence of Mathematical Errors on Mathematical Thinking Style". Collection of Research Papers "Problems of Modern Psychology", nr 54 (3.12.2021): 116–36. http://dx.doi.org/10.32626/2227-6246.2021-54.116-136.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Knuth, Donald E. "Algorithmic Thinking and Mathematical Thinking". American Mathematical Monthly 92, nr 3 (marzec 1985): 170. http://dx.doi.org/10.2307/2322871.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Knuth, Donald E. "Algorithmic Thinking and Mathematical Thinking". American Mathematical Monthly 92, nr 3 (marzec 1985): 170–81. http://dx.doi.org/10.1080/00029890.1985.11971572.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Selden, Annie, Tommy Dreyfus, In P. Nesher i J. Kilpatrick. "Advanced Mathematical Thinking". College Mathematics Journal 22, nr 3 (maj 1991): 268. http://dx.doi.org/10.2307/2686656.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Griffiths, H. B., i David Tall. "Advanced Mathematical Thinking". Mathematical Gazette 79, nr 484 (marzec 1995): 159. http://dx.doi.org/10.2307/3620036.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Manouchehri, Azita, Pingping Zhang i Jenna Tague. "Nurturing Mathematical Thinking". Mathematics Teacher 111, nr 4 (styczeń 2018): 300–303. http://dx.doi.org/10.5951/mathteacher.111.4.0300.

Pełny tekst źródła
Streszczenie:
With the publication of the National Council of Teachers of Mathematics' Curriculum Standards document in 1989, nurturing students' mathematical thinking secure a prominent place in the discourse surrounding school curriculum and instructional redesign. Although the standards document did not provide a definition for mathematical thinking, the authors highlighted processes that could support its development, including problem solving, communicating ideas, building and justifying arguments, and reasoning formally and informally about potential mathematical relationships. Less articulated were ways that mathematical thinking may be supported toward the development of proving and prooflike reasoning among students (Maher and Martino 1996).
Style APA, Harvard, Vancouver, ISO itp.
7

Edwards, Barbara S., Ed Dubinsky i Michael A. McDonald. "Advanced Mathematical Thinking". Mathematical Thinking and Learning 7, nr 1 (styczeń 2005): 15–25. http://dx.doi.org/10.1207/s15327833mtl0701_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Turner, Julianne C., Karen Rossman Styers i Debra G. Daggs. "Encouraging Mathematical Thinking". Mathematics Teaching in the Middle School 3, nr 1 (wrzesień 1997): 66–72. http://dx.doi.org/10.5951/mtms.3.1.0066.

Pełny tekst źródła
Streszczenie:
With these words, the NCTM (1989, 65) portrays a dilemma familiar to many middle-grades teachers. Although many teachers strive to involve their students in active and challenging problem-solving activities, students' past experiences may have instilled preconceptions that mathematics is mechanical, uninteresting, or unattainable. In addition, many teachers lack models and examples of how to design mathematics instruction so that it fosters students' engagement. Because the middle grades are crucial years for developing students' future interest in mathematics, middle-grades teachers must take seriously the challenge of presenting mathematics as an exciting discipline that is relevant and accessible to all students. For the past two year, we have been experimenting with approaches that will inte rest students in challenging mathematics while supporting them in constructing meaning.
Style APA, Harvard, Vancouver, ISO itp.
9

Belango, Manuel A. "Enhancing Students’ Mathematical Thinking through Math Journal". International Journal of Psychosocial Rehabilitation 24, nr 5 (20.04.2020): 5622–29. http://dx.doi.org/10.37200/ijpr/v24i5/pr2020267.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Komiljanovna, Durdona Toshpulatova, i Turdali Sultonov Muhtarovich. "Shaping Mathematical Thinking Skills In Primary Schools". American Journal of Social Science and Education Innovations 02, nr 10 (28.10.2020): 157–60. http://dx.doi.org/10.37547/tajssei/volume02issue10-25.

Pełny tekst źródła
Streszczenie:
The arithmetic material forms the main content of the course. The core of the elementary course consists of arithmetic of natural numbers and basic quantities. In addition, the basic concepts of geometry and algebra are combined in this course.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Mathematical thinking"

1

Hart, Hilary. "Mathematics Vocabulary and English Learners: A Study of Students' Mathematical Thinking". BYU ScholarsArchive, 2010. https://scholarsarchive.byu.edu/etd/2573.

Pełny tekst źródła
Streszczenie:
This study examined the mathematical thinking of English learners as they were taught mathematics vocabulary through research-based methods. Four English learners served as focus students. After administering a pre-performance assessment, I taught a 10-lesson unit on fractions. I taught mathematics vocabulary through the use of a mathematics word wall, think-pair-shares, graphic organizers, journal entries, and picture dictionaries. The four focus students were audio recorded to capture their spoken discourse. Student work was collected to capture written discourse. Over the course of the unit, the four focus students used the mathematics vocabulary words that were taught explicitly. The focus students gained both procedural and conceptual knowledge of fractions during this unit. Students also expressed elevated confidence in their mathematics abilities.
Style APA, Harvard, Vancouver, ISO itp.
2

Hannula, Markku. "Affect in mathematical thinking and learning /". Turku : University of Turku, 2004. http://kirjasto2.utu.fi/julkaisupalvelut/b/annaalit/B273.html.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Monteleone, Chrissoula. "Critical mathematical thinking in young students". Phd thesis, Australian Catholic University, 2021. https://acuresearchbank.acu.edu.au/download/cb06753760247f43b88bfde14ea04bc78463c1734aa47d3ca60129d4d5e7c8ec/2879980/Monteleone_2021_Critical_mathematical_thinking_in_young_students.pdf.

Pełny tekst źródła
Streszczenie:
The aims of the study were to investigate critical mathematical thinking in young students, and teaching actions/questions that help these young students exhibit their critical mathematical thinking. A key finding was the conceptualisation of a Critical Mathematical Thinking Framework for Young Students. This framework (a) articulates the key characteristics young students exhibit as they engage in critical mathematical thinking, and (b) can be used by teachers to help them identify critical mathematical thinking within the classroom context. Additionally, specific teacher questions that support young students to exhibit critical mathematical thinking were delineated. The study determined that teachers play a pivotal role in supporting young students to exhibit their critical mathematical thinking.
Style APA, Harvard, Vancouver, ISO itp.
4

Argyle, Sean Francis. "Mathematical thinking: From cacophony to consensus". Kent State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=kent1337696397.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Lane, Catherine Pullin. "Mathematical Thinking and the Process of Specializing". University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1307441324.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Stillman, Gloria Ann. "Assessing higher order mathematical thinking through applications /". St. Lucia, Qld, 2001. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe16747.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Cardella, Monica E. "Engineering mathematics : an investigation of students' mathematical thinking from a cognitive engineering perspective /". Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/10692.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Tanner, H. F. R. "Using and applying mathematics : developing mathematical thinking through practical problem solving and modelling". Thesis, Swansea University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.639162.

Pełny tekst źródła
Streszczenie:
Using and Applying Mathematics in the National Curriculum focuses on the development of reasoning skills through problem solving, and links the processes involved in learning new mathematics with the application of existing knowledge to new situations. This thesis begins by examining how mathematical knowledge is constructed and how children make sense of it. The nature of practical problem solving and modelling is considered and the literature on teaching and learning problem solving and modelling is reviewed with particular emphasis on metacognition and social practices. The research reports a quasi-experiment in which 314 pupils aged between 11 and 13 followed a mathematical thinking skills course and were compared with matched control pupils using pre-tests, post-tests, delayed texts and structured interviews. Assessment instruments were devised to assess pupils' mathematical cognitive development, their metacognitive skills and their metacognitive self knowledge. Statistical data were supported by participant observations. On average, experimental pupils performed slightly better than control pupils in metacognitive skill and mathematical development in the post and delayed-tests. The content of the mathematical development test had not been taught directly by the course and far transfer is claimed. The teachers were divided into four groups according to teaching approach, based on analysis of the qualitative data. The most successful teachers used a flexible form of scaffolding and encouraged reflection. Their classes demonstrated a substantial advantage over their controls in metacognitive skill, metacognitive self knowledge and mathematical development. Recommendations are made about teaching approaches.
Style APA, Harvard, Vancouver, ISO itp.
9

Reyes-Santander, Pamela, David Aceituno i Pablo Cáceres. "Mathematical Thinking Styles of Students with Academic Talent". Pontificia Universidad Católica del Perú, 2017. http://repositorio.pucp.edu.pe/index/handle/123456789/123827.

Pełny tekst źródła
Streszczenie:
This study explores the predominant mathematical thinking style that students with academic talent used in solving mathematical problems. Thinking styles are preferences by subjects in the way of expressing mathematical skills against a task, in this case, visual, formal and integrated. We assessed 99 students from an academic support talent program, in a retrospective ex post facto study with only one group. We administered the questionnaire mathematical thinking styles of Borromeo-Ferri and determined that these students exhibited mostly an integrated style of thinking, which involves the use of symbols and verbal representations with visual expressions in solving mathematical exercises. They also show a strong orientation to address the problems of combined mode, which involves considering them as a whole at a time.
El presente estudio establece el estilo de pensamiento matemático predominante que utilizan los estudiantes con talento académico en la resolución de problemas matemáticos. Los estilos de pensamiento son preferencias por parte de los sujetos en la forma de expresar las habilidades frente a una tarea matemática, en este caso, visual, formal e integrado. En el marco de un estudio ex post facto retrospectivo de grupo único, se evaluó a un total de 99 estudiantes pertenecientes a un programa académico de apoyo al talento con el cuestionario Estilos de Pensamiento Matemático de Borromeo-Ferri. Los resultados indican que los estudiantes declararon orientarse hacia el estilo de pensamiento integrado, que supone el uso de simbología y representaciones verbales junto con expresiones visuales en la resolución de los ejercicios matemáticos, así como una significativa orientación a abordar los problemas de modo combinado, que supone considerar los problemas como un todo.
La présente étude établit le style de pensée mathématique prédominant utilisé par les étudiants ayant un talent académique dans la résolution de problèmes mathématiques. Les styles de pensée sont des préférences de la part des sujets sous la forme d’exprimer les capacités face à une tâche mathématique, dans ce cas, visuelle, formelle et intégrée. Dans une étude rétrospective sur un seul groupe ex post facto, un total de 99 étudiants appartenant à un programme de soutien aux talents universitaires ont été évalués, à qui le questionnaire Styles de Pensée mathématique de Borromeo-Ferri a été appliqué et déterminé que ce type de sujets déclare principalement un style de pensée intégré, ce qui implique l’utilisation de la symbologie et des représentations verbales ainsi que des expressions visuelles dans la résolution des exercices mathématiques. En outre, ils montrent une forte orientation pour aborder les problèmes de manière combinée, ce qui implique de les considérer dans leur ensemble dans le même temps.
Este estudo estabelece o estilo predominante do pensamento matemático usado por os alunos com talento acadêmico na resolução de problemas matemáticos. Os estilos de pensamento são as preferências dos indivíduos sobre a forma para expressar as capacidades em uma tarefa matemática, neste caso, visual, formal e integrada. Como parte de um estudo ex post facto retrospectivo de grupo único, foram avaliados um total de 99 estudantes de um programa de talento acadêmico. Foram aplicados nos alunos o questionário “Estilos de Pensamento Matemático de Borromeo-Ferri” e determinou-se que a maioria dos participantes declararam um estilo de pensamento integrado, que envolve o uso de símbolos e representações verbais com resolução de expressões visuais de exercícios matemáticos. Eles mostram também uma forte orientação para resolver os problemas de modo combinado, o qual envolve a considerá-los como um todo de uma vez.
Style APA, Harvard, Vancouver, ISO itp.
10

Coetzee, Carla. "Mathematical thinking skills needed by first year programming students". Diss., University of Pretoria, 2016. http://hdl.handle.net/2263/60991.

Pełny tekst źródła
Streszczenie:
The aim of this qualitative study is to explore and describe the mathematical thinking skills that students require for a first level programming subject that forms part of the National Diploma in Information Communication Technology (ICT) at a University of Technology (UoT). Mathematics is an entry requirement for many tertiary programmes, including ICT courses, unfortunately the poor quality of schooling in South Africa limits learners' access to higher education. From the literature it is evident that students lack fluency in fundamental mathematical and problem-solving skills when they enter higher education. In this study, the concept of programming thinking skills is explored, described and linked to mathematical thinking skills. An instrument (Mathematical and Programming Thinking Skills Matrix for the Analysis of Programming Assessment) has been developed and used to analyse examination papers of a first-year programming subject (at TUT) in order to identify mathematical skills as these appear in programming assessments. Semi-structures interviews were conducted with first-year programming lecturers, examiners and moderators. The literature as well and the results of the analysed data indicated and confirmed that mathematical thinking skills are extremely important when learning to program. The results of the study indicate a strong relationship between mathematical thinking skills and programming thinking skills. The outcome of this study is therefore a set of mathematical thinking skills that needs to be developed when compiling a mathematics curriculum for first level programming students studying towards a National Diploma in ICT.
Dissertation (MEd)--University of Pretoria, 2016.
Science, Mathematics and Technology Education
MEd
Unrestricted
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Mathematical thinking"

1

Supporting mathematical thinking. London: David Fulton, 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Orme, Tall David, red. Advanced mathematical thinking. Dordrecht: Kluwer Academic Publishers, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Tall, David, red. Advanced Mathematical Thinking. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/0-306-47203-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

1948-, Watson Anne, Houssart Jenny, Roaf Caroline i National Association for Special Educational Needs (Great Britain), red. Supporting mathematical thinking. London: David Fulton, 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Puddle questions: Assessing mathematical thinking. Mountain View, Calif: Creative Publications, 1994.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

university, Open. Using mathematical thinking: Course guide. Milton Keynes: OU., 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

J, Sternberg Robert, i Ben-Zeev Talia, red. The nature of mathematical thinking. Mahwah, NJ: L. Erlbaum Associates, 1996.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

H, Schoenfeld Alan, red. Mathematical thinking and problem solving. Hillsdale, N.J: L. Erlbaum Associates, 1994.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

D'Angelo, John P. Mathematical thinking: Problem-solving and proofs. Upper Saddle River, NJ: Prentice Hall, 1997.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Brent, West Douglas, red. Mathematical thinking: Problem-solving and proofs. Wyd. 2. Upper Saddle River, NJ: Prentice Hall, 2000.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Mathematical thinking"

1

Shipton, Eva, Michael Kenwood, Cyril Moss i Charles Plumpton. "Mathematical thinking". W Examinations in Mathematics, 7–20. London: Macmillan Education UK, 1985. http://dx.doi.org/10.1007/978-1-349-08089-2_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ervynck, Gontran. "Mathematical Creativity". W Advanced Mathematical Thinking, 42–53. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/0-306-47203-1_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hanna, Gila. "Mathematical Proof". W Advanced Mathematical Thinking, 54–61. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/0-306-47203-1_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Krzywacki, Heidi, Leila Pehkonen i Anu Laine. "Promoting Mathematical Thinking". W Miracle of Education, 115–30. Rotterdam: SensePublishers, 2012. http://dx.doi.org/10.1007/978-94-6091-811-7_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Neri, Ferrante. "Basic Mathematical Thinking". W Linear Algebra for Computational Sciences and Engineering, 3–13. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40341-0_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Neri, Ferrante. "Basic Mathematical Thinking". W Linear Algebra for Computational Sciences and Engineering, 3–19. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21321-3_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Gattuso, Linda, i Maria Gabriella Ottaviani. "Complementing Mathematical Thinking and Statistical Thinking in School Mathematics". W Teaching Statistics in School Mathematics-Challenges for Teaching and Teacher Education, 121–32. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1131-0_15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Alibert, Daniel, i Michael Thomas. "Research on Mathematical Proof". W Advanced Mathematical Thinking, 215–30. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/0-306-47203-1_13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Dreyfus, Tommy. "Advanced Mathematical Thinking Processes". W Advanced Mathematical Thinking, 25–41. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/0-306-47203-1_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Roth, Wolff-Michael. "Mathematical Thinking as Event". W Mathematics in Mind, 65–89. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51809-7_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Mathematical thinking"

1

McMaster, Kirby, Brian Rague i Nicole Anderson. "Integrating Mathematical Thinking, Abstract Thinking, and Computational Thinking". W 2010 IEEE Frontiers in Education Conference (FIE). IEEE, 2010. http://dx.doi.org/10.1109/fie.2010.5673139.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Susanti, Elsa, i Hartono. "Mathematical Critical Thinking and Creative Thinking Skills". W the 2019 International Conference. New York, New York, USA: ACM Press, 2019. http://dx.doi.org/10.1145/3348400.3348408.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Henderson, Peter B., Will Lloyd, Bill Marion, Charles Riedesel, Henry Walker, Doug Baldwin, Venu Dasigi i in. "Striving for mathematical thinking". W Working group reports from ITiCSE. New York, New York, USA: ACM Press, 2001. http://dx.doi.org/10.1145/572133.572136.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Deng, Jixia. "Improve the students' mathematical thinking". W 2016 International Conference on Economy, Management and Education Technology. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icemet-16.2016.7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Nakamura, Takayasu, i Tetsushi Kawasaki. "Computer Science Unplugged for Developing Computational Thinking and Mathematical Thinking". W 2019 International Joint Conference on Information, Media and Engineering (IJCIME). IEEE, 2019. http://dx.doi.org/10.1109/ijcime49369.2019.00108.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Riskon, Muhammad, Rochmad i Nuriana Rachmani Dewi’. "Mathematical Disposition in Algebraic Thinking Skills". W 6th International Conference on Science, Education and Technology (ISET 2020). Paris, France: Atlantis Press, 2022. http://dx.doi.org/10.2991/assehr.k.211125.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Marsitin, Retno, i Nyamik Rahayu Sesanti. "Student Worksheet in Mathematical Creative Thinking". W Annual Conference on Social Sciences and Humanities. SCITEPRESS - Science and Technology Publications, 2018. http://dx.doi.org/10.5220/0007419803210325.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Jiang, Minghong. "Cultivation of Excellent Mathematical Quality Integrating Multilevel Mathematical Thinking Model". W 2019 International Conference on Robots & Intelligent System (ICRIS). IEEE, 2019. http://dx.doi.org/10.1109/icris.2019.00127.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Risnanosanti. "Mathematical thinking styles of undergraduate students and their achievement in mathematics". W THE 4TH INTERNATIONAL CONFERENCE ON RESEARCH, IMPLEMENTATION, AND EDUCATION OF MATHEMATICS AND SCIENCE (4TH ICRIEMS): Research and Education for Developing Scientific Attitude in Sciences And Mathematics. Author(s), 2017. http://dx.doi.org/10.1063/1.4995145.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Saputri, M. D., I. Pramudya i I. Slamet. "The Flexibility of Students’ Mathematical Creative Thinking in Solving Mathematical Problems". W 1st International Multidisciplinary Conference on Education, Technology, and Engineering (IMCETE 2019). Paris, France: Atlantis Press, 2020. http://dx.doi.org/10.2991/assehr.k.200303.030.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Mathematical thinking"

1

Duden, Mary. Teacher Learning in the Context of Students’ Mathematical Thinking. Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.7367.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Vroom, Kristen. Guided Reinvention as a Context for Investigating Students' Thinking about Mathematical Language and for Supporting Students in Gaining Fluency. Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.7420.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Modlo, Yevhenii O., Serhiy O. Semerikov, Ruslan P. Shajda, Stanislav T. Tolmachev i Oksana M. Markova. Methods of using mobile Internet devices in the formation of the general professional component of bachelor in electromechanics competency in modeling of technical objects. [б. в.], lipiec 2020. http://dx.doi.org/10.31812/123456789/3878.

Pełny tekst źródła
Streszczenie:
The article describes the components of methods of using mobile Internet devices in the formation of the general professional component of bachelor in electromechanics competency in modeling of technical objects: using various methods of representing models; solving professional problems using ICT; competence in electric machines and critical thinking. On the content of learning academic disciplines “Higher mathematics”, “Automatic control theory”, “Modeling of electromechanical systems”, “Electrical machines” features of use are disclosed for Scilab, SageCell, Google Sheets, Xcos on Cloud in the formation of the general professional component of bachelor in electromechanics competency in modeling of technical objects. It is concluded that it is advisable to use the following software for mobile Internet devices: a cloud-based spreadsheets as modeling tools (including neural networks), a visual modeling systems as a means of structural modeling of technical objects; a mobile computer mathematical system used at all stages of modeling; a mobile communication tools for organizing joint modeling activities.
Style APA, Harvard, Vancouver, ISO itp.
4

Peters, Vanessa, Deblina Pakhira, Latia White, Rita Fennelly-Atkinson i Barbara Means. Designing Gateway Statistics and Chemistry Courses for Today’s Students: Case Studies of Postsecondary Course Innovations. Digital Promise, sierpień 2022. http://dx.doi.org/10.51388/20.500.12265/162.

Pełny tekst źródła
Streszczenie:
Scholars of teaching and learning examine the impacts of pedagogical decisions on students’ learning and course success. In this report, we describes findings from case studies of eight innovative postsecondary introductory statistics and general chemistry courses that have evidence of improving student completion rates for minoritized and low-income students. The goal of the case studies was to identify the course design elements and pedagogical practices that were implemented by faculty. To identify courses, Digital Promise sought nominations from experts in statistics and chemistry education and reviewed National Science Foundation project abstracts in the Improving Undergraduate STEM Education (IUSE) program. The case studies courses were drawn from 2- and 4-year colleges and were implemented at the level of individual instructors or were part of a department or college-wide intervention. Among the selected courses, both introductory statistics (n = 5) and general chemistry (n = 3) involved changes to the curriculum and pedagogy. Curricular changes involved a shift away from teaching formal mathematical and chemical equations towards teaching that emphasizes conceptual understanding and critical thinking. Pedagogical changes included the implementation of peer-based active learning, formative practice, and supports for students’ metacognitive and self-regulation practices.
Style APA, Harvard, Vancouver, ISO itp.
5

Ivanova, Halyna I., Olena O. Lavrentieva, Larysa F. Eivas, Iuliia O. Zenkovych i Aleksandr D. Uchitel. The students' brainwork intensification via the computer visualization of study materials. [б. в.], lipiec 2020. http://dx.doi.org/10.31812/123456789/3859.

Pełny tekst źródła
Streszczenie:
The paper the approaches to the intensification of the students’ brainwork by means of computer visualization of study material have been disclosed. In general, the content of students’ brainwork has been presented as a type of activity providing the cognitive process, mastering the techniques and ways of thinking, developing the capabilities and abilities of the individual, the product of which is a certain form of information, as a result of the brainwork the outlook of the subject of work is enriched. It is shown the visualization is the process of presenting data in the form of an image with the aim of maximum ease of understanding; the giving process of visual form to any mental object. In the paper the content, techniques, methods and software for creating visualization tools for study material has exposed. The essence and computer tools for creating such types of visualization of educational material like mind maps, supporting notes and infographics have been illustrated; they have been concretized from the point of view of application in the course of studying the mathematical sciences. It is proved the use of visualization tools for study materials helps to increase the intensity and effectiveness of students’ brainwork. Based on the results of an empirical study, it has been concluded the visualization of study materials contributes to the formation of students’ key intellectual competencies and forming their brainwork culture.
Style APA, Harvard, Vancouver, ISO itp.
6

Schoen, Robert C., Daniel Anderson i Charity Bauduin. Elementary Mathematics Student Assessment: Measuring Grade 3, 4, and 5 Students’ Performace in Number (Whole Numbers and Fractions), Operations, and Algebraic Thinking in Spring 2016. Florida State University Library, maj 2018. http://dx.doi.org/10.33009/fsu.1653497279.

Pełny tekst źródła
Streszczenie:
This report provides a description of the development process, field testing, and psychometric properties of a student mathematics test designed to assess grades 3, 4, and 5 student abilities. The test was administered to 2,754 participating grade 3, 4, and 5 students in 55 schools located in 10 public school districts in Florida during spring 2016. Focused on number (including whole number and fractions), operations, and algebraic thinking, the student assessment was designed to serve as a baseline measure of student achievement in a randomized controlled trial evaluating the impact of a teacher professional development program called Cognitively Guided Instruction (CGI) on student learning.
Style APA, Harvard, Vancouver, ISO itp.
7

Schoen, Robert C., Daniel Anderson, Claire M. Riddell i Charity Bauduin. Elementary Mathematics Student Assessment: Measuring the Performance of Grade 3, 4 and 5 Students in Number (Whole Numbers and Fractions), Operations, and Algebraic Thinking in Fall 2015. Florida State University Libraries, maj 2018. http://dx.doi.org/10.33009/fsu.1581609234.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Schoen, Robert, Charity Buntin, Ahmet Guven i Xiaotong Yang. Elementary mathematics student assessment: Measuring the performance of grade K, 1, 2, and 3 students in number (whole numbers and fractions), operations, and algebraic thinking in spring 2019. Florida State University Libraries, marzec 2021. http://dx.doi.org/10.33009/fsu-1622059548.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Pochtoviuk, Svitlana I., Tetiana A. Vakaliuk i Andrey V. Pikilnyak. Possibilities of application of augmented reality in different branches of education. [б. в.], luty 2020. http://dx.doi.org/10.31812/123456789/3756.

Pełny tekst źródła
Streszczenie:
Augmented reality has a great impact on the student in the presentation of educational material: objects of augmented reality affect the development of facial expressions, attention, stimulate thinking, and increase the level of understanding of information. Its implementation in various spheres has indisputable advantages: realism, clarity, application in many industries, information completeness and interactivity. That is why the study presents the possibilities of using augmented reality in the study of mathematics, anatomy, physics, chemistry, architecture, as well as in other fields. The comparison of domestic and foreign proposals for augmented reality is presented. The use of augmented reality in various fields (technology, entertainment, science and medicine, education, games, etc.) should be well thought out and pedagogically appropriate. That is why in the future it is planned to conduct research on the feasibility of using augmented reality and to develop elements of augmented reality accordingly.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii