Gotowa bibliografia na temat „Mathematical conjectures”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Mathematical conjectures”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Mathematical conjectures"
Davies, Alex, Petar Veličković, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad Tomašev, Richard Tanburn i in. "Advancing mathematics by guiding human intuition with AI". Nature 600, nr 7887 (1.12.2021): 70–74. http://dx.doi.org/10.1038/s41586-021-04086-x.
Pełny tekst źródłaZeybek Simsek, Zulfiye. "Constructing-Evaluating-Refining Mathematical Conjectures and Proofs". International Journal for Mathematics Teaching and Learning 21, nr 2 (12.12.2020): 197–215. http://dx.doi.org/10.4256/ijmtl.v21i2.263.
Pełny tekst źródłaAstawa, I. Wayan Puja. "The Differences in Students’ Cognitive Processes in Constructing Mathematical Conjecture". JPI (Jurnal Pendidikan Indonesia) 9, nr 1 (31.03.2020): 49. http://dx.doi.org/10.23887/jpi-undiksha.v9i1.20846.
Pełny tekst źródłaAmir, Firana, i Mohammad Faizal Amir. "Action Proof: Analyzing Elementary School Students Informal Proving Stages through Counter-examples". International Journal of Elementary Education 5, nr 2 (23.08.2021): 401. http://dx.doi.org/10.23887/ijee.v5i3.35089.
Pełny tekst źródłaBARTH, PETER. "IWASAWA THEORY FOR ONE-PARAMETER FAMILIES OF MOTIVES". International Journal of Number Theory 09, nr 02 (5.12.2012): 257–319. http://dx.doi.org/10.1142/s1793042112501357.
Pełny tekst źródłaMollin, R. A., i H. C. Williams. "Proof, Disproof and Advances Concerning Certain Conjectures on Real Quadratic Fields". Canadian Journal of Mathematics 47, nr 5 (1.10.1995): 1023–36. http://dx.doi.org/10.4153/cjm-1995-054-7.
Pełny tekst źródłaBarahmand, Ali. "On Mathematical Conjectures and Counterexamples". Journal of Humanistic Mathematics 9, nr 1 (styczeń 2019): 295–303. http://dx.doi.org/10.5642/jhummath.201901.17.
Pełny tekst źródłaBarbosa, Lucas De Souza, Cinthya Maria Schneider Meneghetti i Cristiana Andrade Poffal. "O uso de geometria dinâmica e da investigação matemática na validação de propriedades geométricas". Ciência e Natura 41 (16.07.2019): 12. http://dx.doi.org/10.5902/2179460x33752.
Pełny tekst źródłaRizos, Ioannis, i Nikolaos Gkrekas. "Is there room for conjectures in mathematics? The role of dynamic geometry environments". European Journal of Science and Mathematics Education 11, nr 4 (1.10.2023): 589–98. http://dx.doi.org/10.30935/scimath/13204.
Pełny tekst źródłaFormanowicz, Piotr, i Krzysztof Tanaś. "The Fan–Raspaud conjecture: A randomized algorithmic approach and application to the pair assignment problem in cubic networks". International Journal of Applied Mathematics and Computer Science 22, nr 3 (1.10.2012): 765–78. http://dx.doi.org/10.2478/v10006-012-0057-y.
Pełny tekst źródłaRozprawy doktorskie na temat "Mathematical conjectures"
Chilstrom, Peter. "Singular Value Inequalities: New Approaches to Conjectures". UNF Digital Commons, 2013. http://digitalcommons.unf.edu/etd/443.
Pełny tekst źródłaBergqvist, Tomas. "To explore and verify in mathematics". Doctoral thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-9345.
Pełny tekst źródłaKeliher, Liam. "Results and conjectures related to the sharp form of the Littlewood conjecture". Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=23402.
Pełny tekst źródłaTran, Anh Tuan. "The volume conjecture, the aj conjectures and skein modules". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44811.
Pełny tekst źródłaCheukam, Ngouonou Jovial. "Apprentissage automatique de cartes d’invariants d’objets combinatoires avec une application pour la synthèse d’algorithmes de filtrage". Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0418.
Pełny tekst źródłaTo improve the efficiency of solution methods for many combinatorial optimisation problems in our daily lives, we use constraints programming to automatically generate conjectures. These conjectures characterise combinatorial objects used to model these optimisation problems. These include graphs, trees, forests, partitions and Boolean sequences. Unlike the state of the art, the system, called Bound Seeker, that we have developed not only generates conjectures independently, but it also points to links between conjectures. Thus, it groups the conjectures in the form of bounds of the same variable characterising the same combinatorial object. This grouping is called a bounds map of the combinatorial object considered. Then, a study consisting of establishing links between generated maps is carried out. The goal of this study is to deepen knowledge on combinatorial objects and to develop the beginnings of automatic proofs of conjectures. Then, to show the consistency of the maps and the Bound Seeker, we develop some manual proofs of the conjectures discovered by the Bound Seeker. This allows us to demonstrate the usefulness of some new bound theorems that we have established. To illustrate one of its concrete applications, we introduce a method for semi-automatic generation of filtering algorithms that reduce the search space for solutions to a combinatorial optimisation problem. This reduction is made thanks to the new bound theorems that we established after having automatically selected them from the conjectures generated by the Bound Seeker. To show the effectiveness of this technique, we successfully apply it to the problem of developing balanced academic courses for students
Mostert, Pieter. "Stark's conjectures". Master's thesis, University of Cape Town, 2008. http://hdl.handle.net/11427/18998.
Pełny tekst źródłaWe give a slightly more general version of the Rubin-Stark conjecture, but show that in most cases it follows from the standard version. After covering the necessary background, we state the principal Stark conjecture and show that although the conjecture depends on a choice of a set of places and a certain isomorphism of Q[GJ-modules, it is independent of these choices. The conjecture is shown to satisfy certain 'functoriality' properties, and we give proofs of the conjecture in some simple cases. The main body of this dissertation concerns a slightly more general version of the Rubin-Stark conjecture. A number of Galois modules. Connected with the conjecture are defined in chapter 4, and some results on exterior powers and Fitting ideals are stated. In chapter 5 the Rubin-Stark conjecture is stated and we show how its truth is unaffected by lowering the top field, changing a set S of places appropriately, and enlarging moduli. We end by giving proofs of the conjecture in several cases. A number of proofs, which would otherwise have interrupted the flow of the exposition, have been relegated to the appendix, resulting in this dissertation suffering from a bad case of appendicitis.
Puente, Philip C. "Crystallographic Complex Reflection Groups and the Braid Conjecture". Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1011877/.
Pełny tekst źródłaNarayanan, Sridhar. "Selberg's conjectures on Dirichlet series". Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=55517.
Pełny tekst źródłaJost, Thomas. "On Donovan's conjecture". Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318785.
Pełny tekst źródłaKhoury, Joseph. "La conjecture de Serre". Thesis, University of Ottawa (Canada), 1996. http://hdl.handle.net/10393/9554.
Pełny tekst źródłaKsiążki na temat "Mathematical conjectures"
Nickerson, Raymond S. Mathematical reasoning: Patterns, problems, conjectures, and proofs. New York: Psychology Press, 2010.
Znajdź pełny tekst źródłaNickerson, Raymond S. Mathematical reasoning: Patterns, problems, conjectures, and proofs. New York: Psychology Press, 2010.
Znajdź pełny tekst źródłaE, Ladas G., red. Dynamics of second order rational difference equations: With open problems and conjectures. Boca Raton, FL: Chapman & Hall/CRC, 2002.
Znajdź pełny tekst źródłaGraczyk, Jacek. The real Fatou conjecture. Princeton, N.J: Princeton University Press, 1998.
Znajdź pełny tekst źródłaSchwartz, Diane Driscoll. Conjecture & proof: An introduction to mathematical thinking. Fort Worth: Saunders College Pub., 1997.
Znajdź pełny tekst źródłaCharles, Figuieres, red. Theory of conjectural variations. River Edge, NJ: World Scientific, 2004.
Znajdź pełny tekst źródłaSalamon, Peter. Facts, conjectures, and improvements for simulated annealing. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2003.
Znajdź pełny tekst źródłaGessen, Masha. Perfect Rigour: A Genius and the Mathematical Breakthrough of a Lifetime. New York: Icon Books, 2011.
Znajdź pełny tekst źródłaEcalle, Jean. Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac. Paris: Hermann, 1992.
Znajdź pełny tekst źródłaGul, Faruk. Foundation of dynamic monopoly and the Coase conjecture. Stanford, Calif: Institute for Mathematical Studies in the Social Sciences, Stanford University, 1985.
Znajdź pełny tekst źródłaCzęści książek na temat "Mathematical conjectures"
Tenenbaum, Gérald, i Michel Mendès France. "The major conjectures". W The Student Mathematical Library, 105–12. Providence, Rhode Island: American Mathematical Society, 2000. http://dx.doi.org/10.1090/stml/006/05.
Pełny tekst źródłaLeuschke, Graham, i Roger Wiegand. "The Brauer-Thrall conjectures". W Mathematical Surveys and Monographs, 267–85. Providence, Rhode Island: American Mathematical Society, 2012. http://dx.doi.org/10.1090/surv/181/15.
Pełny tekst źródłaDutta, S. P. "Syzygies and Homological Conjectures". W Mathematical Sciences Research Institute Publications, 139–56. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-3660-3_7.
Pełny tekst źródłaRabe, Markus N., i Christian Szegedy. "Towards the Automatic Mathematician". W Automated Deduction – CADE 28, 25–37. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79876-5_2.
Pełny tekst źródłaBaldwin, John T. "Vaught and Morley Conjectures for ω-Stable Countable Theories". W Perspectives in Mathematical Logic, 365–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-662-07330-8_18.
Pełny tekst źródłaJahnel, Jörg. "Conjectures on the asymptotics of points of bounded height". W Mathematical Surveys and Monographs, 35–80. Providence, Rhode Island: American Mathematical Society, 2014. http://dx.doi.org/10.1090/surv/198/03.
Pełny tekst źródłaShekhar, Sudhanshu, i R. Sujatha. "Introduction to the Conjectures of Birch and Swinnerton-Dyer". W Mathematical Lectures from Peking University, 1–17. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6664-2_1.
Pełny tekst źródłaCarmona, Rene, i Frederic Cerou. "Transport by Incompressible random velocity fields: Simula- tions & Mathematical Conjectures". W Mathematical Surveys and Monographs, 153–81. Providence, Rhode Island: American Mathematical Society, 1999. http://dx.doi.org/10.1090/surv/064/04.
Pełny tekst źródłaMitchell, Stephen A. "On the Lichtenbaum-Quillen Conjectures from a Stable Homotopy-Theoretic Viewpoint". W Mathematical Sciences Research Institute Publications, 163–240. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4613-9526-3_7.
Pełny tekst źródłaDinneen, Michael J. "A Program-Size Complexity Measure for Mathematical Problems and Conjectures". W Computation, Physics and Beyond, 81–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27654-5_7.
Pełny tekst źródłaStreszczenia konferencji na temat "Mathematical conjectures"
Herlina, Dina, Ely Susanti, Elika Kurniadi i Novita Sari. "Ability to prove mathematical conjectures through ICT-assisted creative problem solving learning for class VIII students". W THE 2ND NATIONAL CONFERENCE ON MATHEMATICS EDUCATION (NACOME) 2021: Mathematical Proof as a Tool for Learning Mathematics. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0142729.
Pełny tekst źródłaCastle, Sarah D. "Embracing Mathematical Conjecture Through Coding and Computational Thinking". W SIGCSE 2024: The 55th ACM Technical Symposium on Computer Science Education. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3626253.3635561.
Pełny tekst źródłaGurevich, Shagmar. "Proof of the Kurlberg-Rudnick Rate Conjecture". W p-ADIC MATHEMATICAL PHYSICS: 2nd International Conference. AIP, 2006. http://dx.doi.org/10.1063/1.2193112.
Pełny tekst źródłaBurqan, Aliaa. "New algebraic insights to the Goldbach conjecture". W 5TH INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES (ICMS5), 020007. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0228106.
Pełny tekst źródłaWang, Yu. "The Mathematical Modeling and Proof of the Goldbach Conjecture". W 2018 3rd International Conference on Modelling, Simulation and Applied Mathematics (MSAM 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/msam-18.2018.6.
Pełny tekst źródłaChen, Gen-Fang. "Generalization of Steinhaus conjecture". W International Conference on Pure, Applied, and Computational Mathematics (PACM 2023), redaktorzy Zhen Wang i Dunhui Xiao. SPIE, 2023. http://dx.doi.org/10.1117/12.2678950.
Pełny tekst źródłaCruz-Uribe, David, José María Martell i Carlos Pérez. "A note on the off-diagonal Muckenhoupt-Wheeden conjecture". W V International Course of Mathematical Analysis in Andalusia. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814699693_0006.
Pełny tekst źródłaCHIA, G. L., i SIEW-HUI ONG. "ON BARNETTE'S CONJECTURE AND CBP GRAPHS WITH GIVEN NUMBER OF HAMILTON CYCLES". W Third Asian Mathematical Conference 2000. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777461_0012.
Pełny tekst źródłaHuang, Junjie, Ying Xiao i Chenglian Liu. "A study of android calculator based on Lemoine’s conjecture". W MATHEMATICAL METHODS AND COMPUTATIONAL TECHNIQUES IN SCIENCE AND ENGINEERING II. Author(s), 2018. http://dx.doi.org/10.1063/1.5045419.
Pełny tekst źródłaJansirani, N., R. Rama i V. R. Dare. "A counter example to Steinberg conjecture". W INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN MATHEMATICS AND COMPUTATIONAL ENGINEERING: ICRAMCE 2022. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0156823.
Pełny tekst źródła