Gotowa bibliografia na temat „Materials Engineering; Computational solid mechanics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Materials Engineering; Computational solid mechanics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Materials Engineering; Computational solid mechanics"
MIYOSHI, Toshiro. "Supercomputing in Computational Solid Mechanics." Transactions of the Japan Society of Mechanical Engineers Series A 57, nr 541 (1991): 1958–63. http://dx.doi.org/10.1299/kikaia.57.1958.
Pełny tekst źródłaTomita, Yoshihiro. "Simulations of Plastic Instabilities in Solid Mechanics". Applied Mechanics Reviews 47, nr 6 (1.06.1994): 171–205. http://dx.doi.org/10.1115/1.3111077.
Pełny tekst źródłaChong, Ken P. "Nano Science and Engineering in Solid Mechanics". Acta Mechanica Solida Sinica 21, nr 2 (kwiecień 2008): 95–103. http://dx.doi.org/10.1007/s10338-008-0812-7.
Pełny tekst źródłaSu, Tung-Huan, Szu-Jui Huang, Jimmy Gaspard Jean i Chuin-Shan Chen. "Multiscale computational solid mechanics: data and machine learning". Journal of Mechanics 38 (2022): 568–85. http://dx.doi.org/10.1093/jom/ufac037.
Pełny tekst źródłaZhong, Wanxie. "Some developments of computational solid mechanics in China". Computers & Structures 30, nr 4 (styczeń 1988): 783–88. http://dx.doi.org/10.1016/0045-7949(88)90105-8.
Pełny tekst źródłaKarabelas, Elias, Gundolf Haase, Gernot Plank i Christoph M. Augustin. "Versatile stabilized finite element formulations for nearly and fully incompressible solid mechanics". Computational Mechanics 65, nr 1 (11.09.2019): 193–215. http://dx.doi.org/10.1007/s00466-019-01760-w.
Pełny tekst źródłaXing-feng, Wang, i Wang Xing-fa. "Computational model of boundary integral equation in solid mechanics". Applied Mathematics and Mechanics 6, nr 6 (czerwiec 1985): 559–68. http://dx.doi.org/10.1007/bf01876395.
Pełny tekst źródłaRashid, M. M., i A. Sadri. "The partitioned element method in computational solid mechanics". Computer Methods in Applied Mechanics and Engineering 237-240 (wrzesień 2012): 152–65. http://dx.doi.org/10.1016/j.cma.2012.05.014.
Pełny tekst źródłaBishop, S. R. "Chemical expansion of solid oxide fuel cell materials: A brief overview". Acta Mechanica Sinica 29, nr 3 (czerwiec 2013): 312–17. http://dx.doi.org/10.1007/s10409-013-0045-y.
Pełny tekst źródłaFu, Shan, i Eann Patterson. "Special issue on validation of computational solid mechanics models". Journal of Strain Analysis for Engineering Design 48, nr 1 (styczeń 2013): 3–4. http://dx.doi.org/10.1177/0309324712473553.
Pełny tekst źródłaRozprawy doktorskie na temat "Materials Engineering; Computational solid mechanics"
Zhang, Yingchun. "Computational study of the transport mechanisms of molecules and ions in solid materials". [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1711.
Pełny tekst źródłaWang, Chao. "A COMPUTATIONAL STUDY OF LINKING SOLID OXIDE FUEL CELL MICROSTRUCTURE PARAMETERS TO CELL PERFORMANCE". Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1377786080.
Pełny tekst źródłaRibeiro-Ayeh, Steven. "Finite element modelling of the mechanics of solid foam materials". Doctoral thesis, Stockholm, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-154.
Pełny tekst źródłaAbbasi, Baharanchi Ahmadreza. "Development of a Two-Fluid Drag Law for Clustered Particles Using Direct Numerical Simulation and Validation through Experiments". FIU Digital Commons, 2015. http://digitalcommons.fiu.edu/etd/2489.
Pełny tekst źródłaTofangchi, Mahyari Abbas Ali. "Computational modelling of fracture and damage in poroelastic media". Thesis, McGill University, 1997. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=35426.
Pełny tekst źródłaAs the applications of the theory of poroelasticity diversify, attention needs to be focused on other aspects of importance. The class of transient and steady crack extension in poroelastic media is recognized as an area of interest in geomechanics applications and in energy resources recovery from geological formations. A computational algorithm is developed to examine the transient quasi-static crack extension in poroelastic media where the temporal and spatial variations of boundary conditions governing the displacement, traction and pore pressure fields are taken into account in the incremental analysis. The path of crack extension is established by a mixed-mode crack extension criterion applicable to the porous fabric. The computational modelling of steady state crack extension in poroelastic media at constant velocity is also examined for the plane strain problems. The finite element formulations of the governing equations, which are velocity-dependent, are developed by employing the Galerkin technique. The poroelastic behaviour of material depends on the propagation velocity at the crack tip. The computational schemes developed in this study followed an extensive procedure of verification via known analytical solutions to poroelasticity problems and for limiting cases of initial undrained (t → 0+) and final drained (t → +infinity) elastic responses recovered through analogous problems in classical elasticity.
Tang, Baobao. "Development of Mathematical and Computational Models to Design Selectively Reinforced Composite Materials". Thesis, University of Louisiana at Lafayette, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10163313.
Pełny tekst źródłaDifferent positions of a material used for structures experience different stresses, sometimes at both extremes, when undergoing processing, manufacturing, and serving. Taking the three-point bending as an example, the plate experiences higher stress in the middle span area and lower stress in both sides of the plate. In order to ensure the performance and reduce the cost of the composite, placement of different composite material with different mechanical properties, i.e. selective reinforcement, is proposed.
Very few study has been conducted on selective reinforcement. Therefore, basic understanding on the relationship between the selective reinforcing variables and the overall properties of composite material is still unclear and there is still no clear methodology to design composite materials under different types of loads.
This study started from the analysis of composite laminate under three point bending test. From the mechanical analysis and simulation result of homogeneously reinforced composite materials, it is found that the stress is not evenly distributed on the plate based on through-thickness direction and longitudinal direction. Based on these results, a map for the stress distribution under three point bending was developed. Next, the composite plate was selectively designed using two types of configurations. Mathematical and finite element analysis (FEA) models were built based on these designs. Experimental data from tests of hybrid composite materials was used to verify the mathematical and FEA models. Analysis of the mathematical model indicates that the increase in stiffness of the material at the top and bottom surfaces and middle-span area is the most effective way to improve the flexural modulus in three point bending test. At the end of this study, a complete methodology to perform the selective design was developed.
Dev, Bodhayan. "Characterization of Ceramic/Glass Composite Seals for Solid Oxide Fuel Cells". The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1400847202.
Pełny tekst źródłaTran, Hai Thanh. "Experimental and Computational Study on Fracture Mechanics of Multilayered Structures". Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6595.
Pełny tekst źródłaGiardina, Ronald Joseph Jr. "General Nonlinear-Material Elasticity in Classical One-Dimensional Solid Mechanics". ScholarWorks@UNO, 2019. https://scholarworks.uno.edu/td/2666.
Pełny tekst źródłaAsmadi, Aldi. "Crystal structure prediction : a molecular modellling study of the solid state behaviour of small organic compounds". Thesis, University of Bradford, 2010. http://hdl.handle.net/10454/4441.
Pełny tekst źródłaKsiążki na temat "Materials Engineering; Computational solid mechanics"
Adnan, Ibrahimbegović, i SpringerLink (Online service), red. Nonlinear Solid Mechanics. Dordrecht: Springer Netherlands, 2009.
Znajdź pełny tekst źródłaKlaus-Jürgen, Bathe, red. Computational fluid and solid mechanics 2003: Proceedings, Second MIT Conference on Computational Fluid and Solid Mechanics, June 17-20, 2003. Amsterdam: Elsevier, 2003.
Znajdź pełny tekst źródłaDoghri, Issam. Mechanics of Deformable Solids: Linear, Nonlinear, Analytical and Computational Aspects. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.
Znajdź pełny tekst źródłaPilkey, Walter D. Mechanics of structures: Variational and computational methods. Boca Raton: CRC Press, 1992.
Znajdź pełny tekst źródła1931-, Wunderlich W., red. Mechanics of structures: Variational and computational methods. Boca Raton: CRC Press, 1994.
Znajdź pełny tekst źródłaCurnier, Alain. Computational Methods in Solid Mechanics. Dordrecht: Springer Netherlands, 1994.
Znajdź pełny tekst źródłaHosford, William F. Solid mechanics. New York: Cambridge University Press, 2010.
Znajdź pełny tekst źródłaPin, Tong, red. Classical and computational solid mechanics. Singapore: World Scientific, 2001.
Znajdź pełny tekst źródłaSolid mechanics. New York: Cambridge University Press, 2010.
Znajdź pełny tekst źródłaHosford, William F. Solid mechanics. New York: Cambridge University Press, 2010.
Znajdź pełny tekst źródłaCzęści książek na temat "Materials Engineering; Computational solid mechanics"
Larson, Mats G., i Fredrik Bengzon. "Solid Mechanics". W Texts in Computational Science and Engineering, 257–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33287-6_11.
Pełny tekst źródłaLangtangen, Hans Petter. "Solid Mechanics Applications". W Texts in Computational Science and Engineering, 493–537. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55769-9_5.
Pełny tekst źródłaLangtangen, Hans Petter. "Solid Mechanics Applications". W Lecture Notes in Computational Science and Engineering, 367–401. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-01170-6_5.
Pełny tekst źródłaBrocks, Wolfgang. "Computational Fracture Mechanics". W Continuum Scale Simulation of Engineering Materials, 621–37. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603786.ch32.
Pełny tekst źródłaBucalem, Miguel Luiz, i Klaus-Jürgen Bathe. "Mathematical models used in engineering structural analysis". W Computational Fluid and Solid Mechanics, 179–365. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-540-26400-2_4.
Pełny tekst źródłaHamouda, A. M. S., i M. S. J. Hashmi. "A Simple Technique for Evaluating Material Constants for Solid Materials for Various Flow Stress Models". W Computational Mechanics ’95, 1767. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79654-8_291.
Pełny tekst źródłaHiga, Yoshikazu, Hiroshi Kitagawa i Yoshihiro Tomita. "Computational Modeling and Characterization of Materials with Periodic Microstructure using Asymptotic Homogenization Method". W Solid Mechanics and its Applications, 255–68. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2111-4_25.
Pełny tekst źródłaMaugin, G. A., i S. Imatani. "Material Growth in Solid-Like Materials". W IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains, 221–34. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0297-3_20.
Pełny tekst źródłaRajapakse, Yapa D. S. "Onr Solid Mechanics Research Program Overview". W Experimental Analysis of Nano and Engineering Materials and Structures, 23–24. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6239-1_11.
Pełny tekst źródłaYagawa, Genki, i Hitoshi Matsubara. "Enriched Element Method and Its Applications to Solid Mechanics". W Computational Methods in Engineering & Science, 15–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-48260-4_2.
Pełny tekst źródłaStreszczenia konferencji na temat "Materials Engineering; Computational solid mechanics"
Fowler, Bryce L., i Raymond K. Yee. "Application of Finite Volume Method for Solid Mechanics". W ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-55297.
Pełny tekst źródłaNagchaudhuri, Abhijit, i Emin Yilmaz. "Design Experience Using Software Tools in Undergraduate Engineering Mechanics Courses". W ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-69242.
Pełny tekst źródłaScotti, Christine M., Ender A. Finol, Siddharth Viswanathan, Aleksandr Shkolnik, Elena S. DiMartino, David A. Vorp i Cristina H. Amon. "Computational Fluid Dynamics and Solid Mechanics Analyses of a Patient-Specific AAA Pre- and Post-EVAR". W ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-62352.
Pełny tekst źródłaGibson, Phillip W., i Majid Charmchi. "Application of Computational Fluid Dynamics to Protective Clothing System Evaluation". W ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1570.
Pełny tekst źródłaRenaud, Adrien, i Thomas Heuzé. "A DISCONTINUOUS GALERKIN MATERIAL POINT METHOD (DGMPM) FOR THE SIMULATION OF IMPACT PROBLEMS IN SOLID MECHANICS". W 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2017. http://dx.doi.org/10.7712/120117.5678.17188.
Pełny tekst źródłaShi, Jianxu, i Roger G. Ghanem. "Stochastic Modeling of Cracked Solids and the Related Size Effects". W ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/omae2002-28070.
Pełny tekst źródłaTian, F. B., H. Dai, H. Luo, J. F. Doyle i B. Rousseau. "Computational Fluid–Structure Interaction for Biological and Biomedical Flows". W ASME 2013 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/fedsm2013-16408.
Pełny tekst źródłade Lemos, Marcelo J. S., i Nicolau B. Santos. "Turbulent Heat Transfer in Channels With Solid and Porous Baffles". W ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81505.
Pełny tekst źródłaHolzapfel, Gerhard A., Christian A. J. Schulze-Bauer i Michael Stadler. "Mechanics of Angioplasty: Wall, Balloon and Stent". W ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1927.
Pełny tekst źródłaAhmadi, Eisa, M. M. Aghdam i Nasrin Sheikhy. "A New Truly Meshless Method for Heat Conduction in Solid Structures". W ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40615.
Pełny tekst źródła