Artykuły w czasopismach na temat „Materials Chemistry - Graphene Nanostructure”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Materials Chemistry - Graphene Nanostructure”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Barra, Ana, Cláudia Nunes, Eduardo Ruiz-Hitzky i Paula Ferreira. "Green Carbon Nanostructures for Functional Composite Materials". International Journal of Molecular Sciences 23, nr 3 (6.02.2022): 1848. http://dx.doi.org/10.3390/ijms23031848.
Pełny tekst źródłaWallace, Steaphan M., Thiyagu Subramani, Wipakorn Jevasuwan i Naoki Fukata. "Conversion of Amorphous Carbon on Silicon Nanostructures into Similar Shaped Semi-Crystalline Graphene Sheets". Journal of Nanoscience and Nanotechnology 21, nr 9 (1.09.2021): 4949–54. http://dx.doi.org/10.1166/jnn.2021.19329.
Pełny tekst źródłaTamm, Aile, Tauno Kahro, Helle-Mai Piirsoo i Taivo Jõgiaas. "Atomic-Layer-Deposition-Made Very Thin Layer of Al2O3, Improves the Young’s Modulus of Graphene". Applied Sciences 12, nr 5 (27.02.2022): 2491. http://dx.doi.org/10.3390/app12052491.
Pełny tekst źródłaXu, Yangyang, Jinyang Liu, Chuandong Zuo, Hongbing Cai, Ping Wu, Zhigao Huang, Fachun Lai, Limei Lin, Weifeng Zheng i Yan Qu. "The Role of Hydrogen on the Growth of Graphene Nanostructure Using a Two-Step Method". Journal of Nanoscience and Nanotechnology 19, nr 11 (1.11.2019): 7294–300. http://dx.doi.org/10.1166/jnn.2019.16652.
Pełny tekst źródłaHuang, Yue, Jiayi Lin, Liyue Liu, Qing Lu, Xiaoling Zhang, Ganghua Zhang i Dezeng Li. "Enhanced performance of graphene transparent conductive films by introducing SiO2 bilayer antireflection nanostructure". New Journal of Chemistry 43, nr 48 (2019): 19063–68. http://dx.doi.org/10.1039/c9nj03671g.
Pełny tekst źródłaZeng, B., Z. G. Li i W. J. Zeng. "N-doped graphene-cadmium sulfide nanoplates and their improved photocatalytic performance". Digest Journal of Nanomaterials and Biostructures 16, nr 2 (2021): 627–33. http://dx.doi.org/10.15251/djnb.2021.162.627.
Pełny tekst źródłaLiu, Yansheng, Zhenle Qin, Junpeng Deng, Jin Zhou, Xiaobo Jia, Guofu Wang i Feng Luo. "The Advanced Applications of 2D Materials in SERS". Chemosensors 10, nr 11 (2.11.2022): 455. http://dx.doi.org/10.3390/chemosensors10110455.
Pełny tekst źródłaShang, Lina, Faming Kang, Wenze Gao, Zheng Zhou i Wei Xu. "On-Surface Synthesis of sp-Carbon Nanostructures". Nanomaterials 12, nr 1 (31.12.2021): 137. http://dx.doi.org/10.3390/nano12010137.
Pełny tekst źródłaCatania, Federica, Elena Marras, Mauro Giorcelli, Pravin Jagdale, Luca Lavagna, Alberto Tagliaferro i Mattia Bartoli. "A Review on Recent Advancements of Graphene and Graphene-Related Materials in Biological Applications". Applied Sciences 11, nr 2 (10.01.2021): 614. http://dx.doi.org/10.3390/app11020614.
Pełny tekst źródłaŽurauskienė, Nerija. "Engineering of Advanced Materials for High Magnetic Field Sensing: A Review". Sensors 23, nr 6 (8.03.2023): 2939. http://dx.doi.org/10.3390/s23062939.
Pełny tekst źródłaZhou, Zhe, Fei Xiu, Tongfen Jiang, Jingxuan Xu, Jie Chen, Juqing Liu i Wei Huang. "Solution-processable zinc oxide nanorods and a reduced graphene oxide hybrid nanostructure for highly flexible and stable memristor". Journal of Materials Chemistry C 7, nr 35 (2019): 10764–68. http://dx.doi.org/10.1039/c9tc03840j.
Pełny tekst źródłaYan, Xin, i Liang-shi Li. "Solution-chemistry approach to graphene nanostructures". Journal of Materials Chemistry 21, nr 10 (2011): 3295. http://dx.doi.org/10.1039/c0jm02827d.
Pełny tekst źródłaTorres, Tomas, Elisa López-Serrano, Marta Gomez-Gomez, Luis M. Mateo, Jorge Labella, Giovanni Bottari i Mine Ince. "(Invited) Porphyrinoid-Carbon Nanostructure Ensembles and Fused Porphyrin-Graphene Nanoribbons". ECS Meeting Abstracts MA2022-01, nr 11 (7.07.2022): 828. http://dx.doi.org/10.1149/ma2022-0111828mtgabs.
Pełny tekst źródłaAdorinni, Simone, Maria C. Cringoli, Siglinda Perathoner, Paolo Fornasiero i Silvia Marchesan. "Green Approaches to Carbon Nanostructure-Based Biomaterials". Applied Sciences 11, nr 6 (11.03.2021): 2490. http://dx.doi.org/10.3390/app11062490.
Pełny tekst źródłaLau, Kam Sheng, Sin Tee Tan, Riski Titian Ginting, Poi Sim Khiew, Siew Xian Chin i Chin Hua Chia. "A mechanistic study of silver nanostructure incorporating reduced graphene oxide via a flow synthesis approach". New Journal of Chemistry 44, nr 4 (2020): 1439–45. http://dx.doi.org/10.1039/c9nj04881b.
Pełny tekst źródłaTabassum, Sadia, Saira Naz, Amjad Nisar, Hongyu Sun, Shafqat Karim, Maaz Khan, Shiasta Shahzada, Ata ur Rahman i Mashkoor Ahmad. "Synergic effect of plasmonic gold nanoparticles and graphene oxide on the performance of glucose sensing". New Journal of Chemistry 43, nr 47 (2019): 18925–34. http://dx.doi.org/10.1039/c9nj04532e.
Pełny tekst źródłaWei, Xianqi, Zelin Li, Junchen Lu, Shunlong Xu, Yuancheng Zhu, Linxing Shi, Zengguang Huang, Guoqing Lu i Xiaoli Wang. "Thermal Conductivity of Graphene on Nanostructure Size from Nonequilibrium Molecular Dynamics Simulations". Journal of Computational and Theoretical Nanoscience 17, nr 4 (1.04.2020): 1566–70. http://dx.doi.org/10.1166/jctn.2020.8938.
Pełny tekst źródłaKudr, Jiri, Vojtech Adam i Ondrej Zitka. "Fabrication of Graphene/Molybdenum Disulfide Composites and Their Usage as Actuators for Electrochemical Sensors and Biosensors". Molecules 24, nr 18 (17.09.2019): 3374. http://dx.doi.org/10.3390/molecules24183374.
Pełny tekst źródłaTurchinovich, Dmitry, Zoltan Mics, Søren A. Jensen, Klaas-Jan Tielrooij, Ivan Ivanov, Khaled Parvez, Akimitsu Narita i in. "Ultrafast carrier dynamics in graphene and graphene nanostructures". Terahertz Science and Technology 13, nr 4 (grudzień 2020): 135–48. http://dx.doi.org/10.1051/tst/2020134135.
Pełny tekst źródłaMetaxa, Zoi S., Athanasia K. Tolkou, Stefania Efstathiou, Abbas Rahdar, Evangelos P. Favvas, Athanasios C. Mitropoulos i George Z. Kyzas. "Nanomaterials in Cementitious Composites: An Update". Molecules 26, nr 5 (6.03.2021): 1430. http://dx.doi.org/10.3390/molecules26051430.
Pełny tekst źródłaKumar, Sanjay, Suneel Kumar, Manisha Sengar i Pratibha Kumari. "Gold-carbonaceous materials based heterostructures for gas sensing applications". RSC Advances 11, nr 23 (2021): 13674–99. http://dx.doi.org/10.1039/d1ra00361e.
Pełny tekst źródłaKononov, Alina, Alexandra Olmstead, Andrew D. Baczewski i André Schleife. "First-principles simulation of light-ion microscopy of graphene". 2D Materials 9, nr 4 (15.09.2022): 045023. http://dx.doi.org/10.1088/2053-1583/ac8e7e.
Pełny tekst źródłaMa, Hongyu, Xiaofang Chen, Shabin Mohammed, Yaoxin Hu, Jun Lu, George P. Simon, Hongjuan Hou i Huanting Wang. "A thermally reduced graphene oxide membrane interlayered with an in situ synthesized nanospacer for water desalination". Journal of Materials Chemistry A 8, nr 48 (2020): 25951–58. http://dx.doi.org/10.1039/d0ta05790h.
Pełny tekst źródłaGulab, Hussain, Nusrat Fatima, Nadia Shahzad, Muhammad Imran Shahzad, Mohsin Siddique, Muhammad Hussain i Muhammad Humayun. "Fabrication of Carbon/Zinc Oxide Nanocomposites as Highly Efficient Catalytic Materials for Application in Dye-Sensitized Solar Cells". Catalysts 12, nr 11 (3.11.2022): 1354. http://dx.doi.org/10.3390/catal12111354.
Pełny tekst źródłaYang, Chuanning, Wangchuan Xiao, Shizhao Ren i Qiyong Li. "Flexible Free-Standing Graphene-Fe2O3 Hybrid Paper with Enhanced Electrochemical Performance for Rechargeable Lithium-Ion Batteries". Coatings 12, nr 11 (11.11.2022): 1726. http://dx.doi.org/10.3390/coatings12111726.
Pełny tekst źródłaGuo, Meng, Yanmei Yang, Yanhua Leng, Li Wang, Huomin Dong, Hong Liu i Weifeng Li. "Edge dominated electronic properties of MoS2/graphene hybrid 2D materials: edge state, electron coupling and work function". Journal of Materials Chemistry C 5, nr 20 (2017): 4845–51. http://dx.doi.org/10.1039/c7tc00816c.
Pełny tekst źródłaWilson, Peter M., Gilbert N. Mbah, Thomas G. Smith, Daniel Schmidt, Rebecca Y. Lai, Tino Hofmann i Alexander Sinitskii. "Three-dimensional periodic graphene nanostructures". Journal of Materials Chemistry C 2, nr 10 (2014): 1879. http://dx.doi.org/10.1039/c3tc32277g.
Pełny tekst źródłaGuseva, Evgenia N., i Vjacheslav V. Zuev. "Kinetics formation of nanostructure of polyurethanes in the presence of graphene". Fullerenes, Nanotubes and Carbon Nanostructures 24, nr 7 (11.05.2016): 474–78. http://dx.doi.org/10.1080/1536383x.2016.1183120.
Pełny tekst źródłaPeng, Yuanyou, Meimei Yu, Lei Zhao, Xiwei Ji, Tianqi He, Ying Liu, Qi Wang i Fen Ran. "3D layered nanostructure of vanadium nitrides quantum Dots@Graphene anode materials via In-Situ redox reaction strategy". Chemical Engineering Journal 417 (sierpień 2021): 129267. http://dx.doi.org/10.1016/j.cej.2021.129267.
Pełny tekst źródłaGolzar, Hossein, Fatemeh Yazdian, Mohadeseh Hashemi, Meisam Omidi, Dorsa Mohammadrezaei, Hamid Rashedi, Masoumeh Farahani, Nazanin Ghasemi, Javad Shabani shayeh i Lobat Tayebi. "Optimizing the hybrid nanostructure of functionalized reduced graphene oxide/silver for highly efficient cancer nanotherapy". New Journal of Chemistry 42, nr 15 (2018): 13157–68. http://dx.doi.org/10.1039/c8nj01764f.
Pełny tekst źródłaYan, Siqi, Jeremy Adcock i Yunhong Ding. "Graphene on Silicon Photonics: Light Modulation and Detection for Cutting-Edge Communication Technologies". Applied Sciences 12, nr 1 (29.12.2021): 313. http://dx.doi.org/10.3390/app12010313.
Pełny tekst źródłaTroncoso, Omar P., i Fernando G. Torres. "Bacterial Cellulose—Graphene Based Nanocomposites". International Journal of Molecular Sciences 21, nr 18 (7.09.2020): 6532. http://dx.doi.org/10.3390/ijms21186532.
Pełny tekst źródłaZhang, Rui, Tongqing Zhang, Youfeng Cai, Xuyang Zhu, Qiong Han, Yu Li i Yi Liu. "Reduced Graphene Oxide-Doped Ag3PO4 Nanostructure as a High Efficiency Photocatalyst Under Visible Light". Journal of Inorganic and Organometallic Polymers and Materials 30, nr 2 (4.06.2019): 543–53. http://dx.doi.org/10.1007/s10904-019-01214-z.
Pełny tekst źródłaMuchtar, Ahmad Rifqi, Ni Luh Wulan Septiani, Muhammad Iqbal, Ahmad Nuruddin i Brian Yuliarto. "Preparation of Graphene–Zinc Oxide Nanostructure Composite for Carbon Monoxide Gas Sensing". Journal of Electronic Materials 47, nr 7 (21.03.2018): 3647–56. http://dx.doi.org/10.1007/s11664-018-6213-x.
Pełny tekst źródłaMutuma, Bridget K., Boitumelo Matsoso, Kamalakannan Ranganathan, Daniel Wamwangi i Neil J. Coville. "Generation of open-ended, worm-like and graphene-like structures from layered spherical carbon materials". RSC Advances 6, nr 24 (2016): 20399–408. http://dx.doi.org/10.1039/c5ra25880d.
Pełny tekst źródłaShahmoradi, Saleheh, Hossein Golzar, Mohadeseh Hashemi, Vahid Mansouri, Meisam Omidi, Fatemeh Yazdian, Amir Yadegari i Lobat Tayebi. "Optimizing the nanostructure of graphene oxide/silver/arginine for effective wound healing". Nanotechnology 29, nr 47 (27.09.2018): 475101. http://dx.doi.org/10.1088/1361-6528/aadedc.
Pełny tekst źródłaBalandin, Alexander A. "Thermal properties of graphene and nanostructured carbon materials". Nature Materials 10, nr 8 (22.07.2011): 569–81. http://dx.doi.org/10.1038/nmat3064.
Pełny tekst źródłaPark, Ho Seok, Bong Gill Choi, Won Hi Hong i Sung-Yeon Jang. "Controlled assembly of graphene oxide nanosheets within one-dimensional polymer nanostructure". Journal of Colloid and Interface Science 406 (wrzesień 2013): 24–29. http://dx.doi.org/10.1016/j.jcis.2013.03.072.
Pełny tekst źródłaThirumal, Vediyappan, Palanisamy Rajkumar, Kisoo Yoo i Jinho Kim. "Hydrothermal Synthesis of Boron-Doped Graphene for High-Performance Zinc-Ion Hybrid Capacitor Using Aloe Vera Gel Electrolyte". Inorganics 11, nr 7 (29.06.2023): 280. http://dx.doi.org/10.3390/inorganics11070280.
Pełny tekst źródłaIONI, Yulia V. "NANOPARTICLES OF NOBLE METALS ON THE SURFACE OF GRAPHENE FLAKES". Periódico Tchê Química 17, nr 36 (20.12.2020): 1199–211. http://dx.doi.org/10.52571/ptq.v17.n36.2020.1215_periodico36_pgs_1199_1211.pdf.
Pełny tekst źródłaLu, Li, Hua Tian, Junhui He i Qiaowen Yang. "Graphene–MnO2 Hybrid Nanostructure as a New Catalyst for Formaldehyde Oxidation". Journal of Physical Chemistry C 120, nr 41 (10.10.2016): 23660–68. http://dx.doi.org/10.1021/acs.jpcc.6b08312.
Pełny tekst źródłaDimitrakakis, Georgios K., Emmanuel Tylianakis i George E. Froudakis. "Pillared Graphene: A New 3-D Network Nanostructure for Enhanced Hydrogen Storage". Nano Letters 8, nr 10 (8.10.2008): 3166–70. http://dx.doi.org/10.1021/nl801417w.
Pełny tekst źródłaOminato, Yuya, i Mikito Koshino. "Orbital magnetism of graphene nanostructures". Solid State Communications 175-176 (grudzień 2013): 51–61. http://dx.doi.org/10.1016/j.ssc.2013.09.023.
Pełny tekst źródłaKarthikeyan, S., M. Selvapandiyan i A. Sankar. "Electrochemical performance of reduced graphene oxide (rGO) decorated lanthanum oxide (La2O3) composite nanostructure as asymmetric supercapacitors". Inorganic Chemistry Communications 139 (maj 2022): 109331. http://dx.doi.org/10.1016/j.inoche.2022.109331.
Pełny tekst źródłaFerraiuolo, Raffaella, Michela Alfe, Valentina Gargiulo, Giovanni Piero Pepe, Francesco Tafuri, Alessandro Pezzella, Giovanni Ausanio i Domenico Montemurro. "Insights into the Electrical Characterization of Graphene-like Materials from Carbon Black". Coatings 12, nr 11 (21.11.2022): 1788. http://dx.doi.org/10.3390/coatings12111788.
Pełny tekst źródłaKim, Seong-Eun, Jin-Kook Yoon i In-Jin Shon. "Rapid Sintering of Nanostructured WC-Graphene Composites and Their Mechanical Properties". Journal of Nanoscience and Nanotechnology 20, nr 7 (1.07.2020): 4436–39. http://dx.doi.org/10.1166/jnn.2020.17579.
Pełny tekst źródłaHan, Qingyan, Zhu Lu, Wei Gao, Meng Wu, Yongkai Wang, Zhongyu Wang, Jianxia Qi i Jun Dong. "Three-dimensional AuAg alloy NPs/graphene/AuAg alloy NP sandwiched hybrid nanostructure for surface enhanced Raman scattering properties". Journal of Materials Chemistry C 8, nr 36 (2020): 12599–606. http://dx.doi.org/10.1039/d0tc02752a.
Pełny tekst źródłaYe, Shizhuo, Ruohua Zhu, Qijun Huang, Jin He, Hao Wang, Yawei Lv i Sheng Chang. "A transport isolation by orbital hybridization transformation toward graphene nanoribbon-based nanostructure integration". Nanotechnology 29, nr 45 (7.09.2018): 455704. http://dx.doi.org/10.1088/1361-6528/aadc75.
Pełny tekst źródłaKrasnova, Anna O., Nadezhda V. Glebova, Angelina G. Kastsova, Maxim K. Rabchinskii i Andrey A. Nechitailov. "Thermal Stabilization of Nafion with Nanocarbon Materials". Polymers 15, nr 9 (27.04.2023): 2070. http://dx.doi.org/10.3390/polym15092070.
Pełny tekst źródłaAlharbi, Raed, Mehrdad Irannejad i Mustafa Yavuz. "A Short Review on the Role of the Metal-Graphene Hybrid Nanostructure in Promoting the Localized Surface Plasmon Resonance Sensor Performance". Sensors 19, nr 4 (19.02.2019): 862. http://dx.doi.org/10.3390/s19040862.
Pełny tekst źródła