Artykuły w czasopismach na temat „Material Electrochemistry”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Material Electrochemistry”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
McCreery, Richard, Adam Bergren, Amin Morteza-Najarian, Sayed Youssef Sayed i Haijun Yan. "Electron transport in all-carbon molecular electronic devices". Faraday Discuss. 172 (2014): 9–25. http://dx.doi.org/10.1039/c4fd00172a.
Pełny tekst źródłaAmbrosi, Adriano, i Martin Pumera. "Exfoliation of layered materials using electrochemistry". Chemical Society Reviews 47, nr 19 (2018): 7213–24. http://dx.doi.org/10.1039/c7cs00811b.
Pełny tekst źródłaXiang, Qian. "Research on Rechargeable Lithium Manganese Battery Material Electrochemical Roasting Performance Analysis". Advanced Materials Research 455-456 (styczeń 2012): 889–94. http://dx.doi.org/10.4028/www.scientific.net/amr.455-456.889.
Pełny tekst źródłaSu, Wei, Yu Chun Li, Fei Yu, Guo Hua Lu, Yuan Chen, Qun Hui Meng i Wei Xia Wang. "Electrochemical Research on Cl- which Destroys the Surface Passivation Film of T23 in Supercritical Water Tubes". Advanced Materials Research 413 (grudzień 2011): 383–90. http://dx.doi.org/10.4028/www.scientific.net/amr.413.383.
Pełny tekst źródłaTang, Yuxin, Yanyan Zhang, Wenlong Li, Bing Ma i Xiaodong Chen. "Rational material design for ultrafast rechargeable lithium-ion batteries". Chemical Society Reviews 44, nr 17 (2015): 5926–40. http://dx.doi.org/10.1039/c4cs00442f.
Pełny tekst źródłaBao, Bin, Boris Rivkin, Farzin Akbar, Dmitriy D. Karnaushenko, Vineeth Kumar Bandari, Laura Teuerle, Christian Becker, Stefan Baunack, Daniil Karnaushenko i Oliver G. Schmidt. "Digital Electrochemistry for On‐Chip Heterogeneous Material Integration". Advanced Materials 33, nr 26 (24.05.2021): 2101272. http://dx.doi.org/10.1002/adma.202101272.
Pełny tekst źródłaKapałka, Agnieszka, György Fóti i Christos Comninellis. "The importance of electrode material in environmental electrochemistry". Electrochimica Acta 54, nr 7 (luty 2009): 2018–23. http://dx.doi.org/10.1016/j.electacta.2008.06.045.
Pełny tekst źródłaBao, Bin, Boris Rivkin, Farzin Akbar, Dmitriy D. Karnaushenko, Vineeth Kumar Bandari, Laura Teuerle, Christian Becker, Stefan Baunack, Daniil Karnaushenko i Oliver G. Schmidt. "Digital Electrochemistry: Digital Electrochemistry for On‐Chip Heterogeneous Material Integration (Adv. Mater. 26/2021)". Advanced Materials 33, nr 26 (lipiec 2021): 2170204. http://dx.doi.org/10.1002/adma.202170204.
Pełny tekst źródłaSun, Gang, Chenxiao Jia, Shuanlong Di, Jianning Zhang, Qinghua Du i Xiujuan Qin. "The Effect of Thermal Treatment Temperature and Duration on Electrochemistry Performance of LiNi1/3Co1/3Mn1/3O2 Cathode Materials for Lithium-ion Batteries". Current Nanoscience 14, nr 5 (23.07.2018): 440–47. http://dx.doi.org/10.2174/1573413714666180320145227.
Pełny tekst źródłaHIGUCHI, Takeshi, Daiki MURAKAMI, Hidetoshi NISHIYAMA, Mitsuo SUGA, Atsushi TAKAHARA i Hiroshi JINNAI. "Nanometer-scale Real-space Observation and Material Processing for Polymer Materials under Atmospheric Pressure: Application of Atmospheric Scanning Electron Microscopy". Electrochemistry 82, nr 5 (2014): 359–63. http://dx.doi.org/10.5796/electrochemistry.82.359.
Pełny tekst źródłaSari, Dwivelia Aftika. "Penerapan Pembelajaran Berbasis Inquiry pada Materi Elektrokimia terhadap Pemahaman Konseptual, Model Mental dan Sikap Siswa". Orbital: Jurnal Pendidikan Kimia 5, nr 2 (31.12.2021): 137–50. http://dx.doi.org/10.19109/ojpk.v5i2.9178.
Pełny tekst źródłaMATSUI, Hideo, Keigo QTSUKI, Emi KUNIMITSU, Hideki KAJITA, Tetsuro KAWAHARA i Masakuni YOSHIHARA. "Electronic Behavior of a Carbon Cluster/Neodymium Oxide Composite Material". Electrochemistry 73, nr 11 (5.11.2005): 959–61. http://dx.doi.org/10.5796/electrochemistry.73.959.
Pełny tekst źródłaTan, Shu Fen, Kate Reidy, Serin Lee, Julian Klein, Nicholas Schneider, Hae Yeon Lee i Frances Ross. "Graphene – A Promising Electrode Material in Liquid Cell Electrochemistry". Microscopy and Microanalysis 27, S1 (30.07.2021): 46–48. http://dx.doi.org/10.1017/s1431927621000751.
Pełny tekst źródłaHümmelgen, Ivo A. "Organic electronic solid state device: electrochemistry of material preparation". Journal of Solid State Electrochemistry 21, nr 7 (6.06.2017): 1977–85. http://dx.doi.org/10.1007/s10008-017-3657-5.
Pełny tekst źródłaBrownson, Dale A. C., Lindsey J. Munro, Dimitrios K. Kampouris i Craig E. Banks. "Electrochemistry of graphene: not such a beneficial electrode material?" RSC Advances 1, nr 6 (2011): 978. http://dx.doi.org/10.1039/c1ra00393c.
Pełny tekst źródłaSAKAGUCHI, Hiroki, Yasutaka NAGAO i Takao ESAKA. "Mechanically Lithiated SnO as an Anode Material for Secondary Battery". Electrochemistry 74, nr 6 (2006): 463–66. http://dx.doi.org/10.5796/electrochemistry.74.463.
Pełny tekst źródłaPaunović, Perica. "Environmental electrochemistry – importance and fields of application". Macedonian Journal of Chemistry and Chemical Engineering 30, nr 1 (15.06.2011): 67. http://dx.doi.org/10.20450/mjcce.2011.71.
Pełny tekst źródłaITO, Atsushi, Yuichi SATO, Takashi SANADA, Tsukuru OHWAKI, Masaharu HATANO, Hideaki HORIE i Yasuhiko OHSAWA. "Local Structure of Li-rich Layered Cathode Material Li[Ni0.17Li0.2Co0.07Mn0.56]O2". Electrochemistry 78, nr 5 (2010): 380–83. http://dx.doi.org/10.5796/electrochemistry.78.380.
Pełny tekst źródłaKUBOTA, Kei, Kazuki YOKOH, Naoaki YABUUCHI i Shinichi KOMABA. "Na2CoPO4F as a High-voltage Electrode Material for Na-ion Batteries". Electrochemistry 82, nr 10 (2014): 909–11. http://dx.doi.org/10.5796/electrochemistry.82.909.
Pełny tekst źródłaMAEDA, Mariko, Akifusa HAGIWARA, Hiroko SOTOUCHI, Hidetaka SATO, Xing-zhe ZHAO, Shigeru MORIKAWA i Osamu KATO. "The Effect of the Graphitization Degree of Carbon Material on Corrosion Rate". Electrochemistry 67, nr 2 (5.02.1999): 155–59. http://dx.doi.org/10.5796/electrochemistry.67.155.
Pełny tekst źródłaZahroh, Fathimatuz. "PENGARUH MODEL PEMBELAJARAN PROJECT BASED LEARNING TERHADAP KEMAMPUAN BERPIKIR KRITIS SISWA PADA MATERI ELEKTROKIMIA". Phenomenon : Jurnal Pendidikan MIPA 10, nr 2 (20.12.2020): 191. http://dx.doi.org/10.21580/phen.2020.10.2.4283.
Pełny tekst źródłaZHANG, Xiaoxue, Yunfeng ZHAN, Fangyan XIE, Weihong ZHANG, Jian CHEN, Weiguang XIE, Wenjie MAI i Hui MENG. "SnS2 Urchins as Anode Material for Lithium-ion Battery". Electrochemistry 84, nr 6 (2016): 420–26. http://dx.doi.org/10.5796/electrochemistry.84.420.
Pełny tekst źródłaWOO, Sang-Wook, Kaoru DOKKO, Hiroyuki NAKANO i Kiyoshi KANAMURA. "Bimodal Porous Carbon as a Negative Electrode Material for Lithium-Ion Capacitors". Electrochemistry 75, nr 8 (2007): 635–40. http://dx.doi.org/10.5796/electrochemistry.75.635.
Pełny tekst źródłaMOON, Jin-Hee, Hirokazu MUNAKATA, Koichi KAJIHARA i Kiyoshi KANAMURA. "Hydrothermal Synthesis of Manganese Dioxide Nanoparticles as Cathode Material for Rechargeable Batteries". Electrochemistry 81, nr 1 (2013): 2–6. http://dx.doi.org/10.5796/electrochemistry.81.2.
Pełny tekst źródłaShida, Naoki, Yaqian Zhou i Shinsuke Inagi. "Bipolar Electrochemistry: A Powerful Tool for Electrifying Functional Material Synthesis". Accounts of Chemical Research 52, nr 9 (22.08.2019): 2598–608. http://dx.doi.org/10.1021/acs.accounts.9b00337.
Pełny tekst źródłaVickers, Jonathan A., Brian M. Dressen, Melissa C. Weston, Kanokporn Boonsong, Orawan Chailapakul, Donald M. Cropek i Charles S. Henry. "Thermoset polyester as an alternative material for microchip electrophoresis/electrochemistry". ELECTROPHORESIS 28, nr 7 (kwiecień 2007): 1123–29. http://dx.doi.org/10.1002/elps.200600445.
Pełny tekst źródłaLi, Qi, Guangshe Li, Chaochao Fu, Dong Luo, Jianming Fan, Dongjiu Xie i Liping Li. "Balancing stability and specific energy in Li-rich cathodes for lithium ion batteries: a case study of a novel Li–Mn–Ni–Co oxide". Journal of Materials Chemistry A 3, nr 19 (2015): 10592–602. http://dx.doi.org/10.1039/c5ta00929d.
Pełny tekst źródłaEstudillo-Wong, Luis Alberto, Claudia Guerrero-Barajas, Jorge Vázquez-Arenas i Nicolas Alonso-Vante. "Revisiting Current Trends in Electrode Assembly and Characterization Methodologies for Biofilm Applications". Surfaces 6, nr 1 (18.01.2023): 2–28. http://dx.doi.org/10.3390/surfaces6010002.
Pełny tekst źródłaLadeesh, VG, i R. Manu. "Grinding-aided electrochemical discharge drilling in the light of electrochemistry". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, nr 6 (6.06.2018): 1896–909. http://dx.doi.org/10.1177/0954406218780129.
Pełny tekst źródłaIrfan, Muhammad, Izhar Ullah Khan, Jiao Wang, Yang Li i Xianhua Liu. "3D porous nanostructured Ni3N–Co3N as a robust electrode material for glucose fuel cell". RSC Advances 10, nr 11 (2020): 6444–51. http://dx.doi.org/10.1039/c9ra08812a.
Pełny tekst źródłaKharlamova, Marianna V., i Christian Kramberger. "Electrochemistry of Carbon Materials: Progress in Raman Spectroscopy, Optical Absorption Spectroscopy, and Applications". Nanomaterials 13, nr 4 (6.02.2023): 640. http://dx.doi.org/10.3390/nano13040640.
Pełny tekst źródłaWidodo, Wiwik. "DEVELOPMENT OF INTEGRATED ELECTROCHEMISTRY TEACHING MATERIAL BASED CONTEXTUAL FOR VOCATIONAL HIGH SCHOOL IN MACHINE ENGINEERING DEPARTEMENT". Jurnal Pena Sains 4, nr 2 (29.10.2017): 80. http://dx.doi.org/10.21107/jps.v4i2.3262.
Pełny tekst źródłaOKUMURA, Toyoki, Tomonari TAKEUCHI i Hironori KOBAYASHI. "Application of LiCoPO4 Positive Electrode Material in All-Solid-State Lithium-Ion Battery". Electrochemistry 82, nr 10 (2014): 906–8. http://dx.doi.org/10.5796/electrochemistry.82.906.
Pełny tekst źródłaKUWABATA, Susumu, Tsukasa TORIMOTO, Akihito IMANISHI i Tetsuya TSUDA. "Introduction of Ionic Liquid to Vacuum Conditions for Development of Material Productions and Analyses". Electrochemistry 80, nr 7 (2012): 498–503. http://dx.doi.org/10.5796/electrochemistry.80.498.
Pełny tekst źródłaKATO, Hisashi, Fumitada IGUCHI i Hiroo YUGAMI. "Compatibility and Performance of La0.675Sr0.325Sc0.99Al0.01O3 Perovskite-type Oxide as an Electrolyte Material for SOFCs". Electrochemistry 82, nr 10 (2014): 845–50. http://dx.doi.org/10.5796/electrochemistry.82.845.
Pełny tekst źródłaWu, Yu Shiang. "Characteristic Improvement of Carbon Coating by Furan Resin on Natural Graphite as Anode for Lithium Ion Batteries". Advanced Materials Research 581-582 (październik 2012): 768–72. http://dx.doi.org/10.4028/www.scientific.net/amr.581-582.768.
Pełny tekst źródłaJiang, Meng. "High Voltage Study of Li-Excess Material as a Cathode Material for Li-Ion Batteries". Electrochemical Society Interface 17, nr 4 (1.12.2008): 70–71. http://dx.doi.org/10.1149/2.f10084if.
Pełny tekst źródłaKunjuzwa, Niki, Mesfin A. Kebede, Kenneth I. Ozoemena i Mkhulu K. Mathe. "Stable nickel-substituted spinel cathode material (LiMn1.9Ni0.1O4) for lithium-ion batteries obtained by using a low temperature aqueous reduction technique". RSC Advances 6, nr 113 (2016): 111882–88. http://dx.doi.org/10.1039/c6ra23052k.
Pełny tekst źródłaMcWilliams, Steven, Connor D. Flynn, Jennifer McWilliams, Donna C. Arnold, Ruri Agung Wahyuono, Andreas Undisz, Markus Rettenmayr i Anna Ignaszak. "Nanostructured Cu2O Synthesized via Bipolar Electrochemistry". Nanomaterials 9, nr 12 (15.12.2019): 1781. http://dx.doi.org/10.3390/nano9121781.
Pełny tekst źródłaXue, Ming-Zhe, i Zheng-Wen Fu. "Lithium electrochemistry of NiSe2: A new kind of storage energy material". Electrochemistry Communications 8, nr 12 (grudzień 2006): 1855–62. http://dx.doi.org/10.1016/j.elecom.2006.08.025.
Pełny tekst źródłaONOZAWA-KOMATSUZAKI, Nobuko, Takashi FUNAKI, Takurou N. MURAKAMI, Said KAZAOUI, Masayuki CHIKAMATSU i Kazuhiro SAYAMA. "Novel Cobalt Complexes as a Dopant for Hole-transporting Material in Perovskite Solar Cells". Electrochemistry 85, nr 5 (2017): 226–30. http://dx.doi.org/10.5796/electrochemistry.85.226.
Pełny tekst źródłaGOCHEVA, Irina D., Shigeto OKADA i Jun-ichi YAMAKI. "Electrochemical Properties of Trirutile-type Li2TiF6 as Cathode Active Material in Li-ion Batteries". Electrochemistry 78, nr 5 (2010): 471–74. http://dx.doi.org/10.5796/electrochemistry.78.471.
Pełny tekst źródłaUCHIDA, Satoshi, Masaki YAMAGATA i Masashi ISHIKAWA. "Improvement of Synthesis Method for LiFePO4/C Cathode Material by High-Frequency Induction Heating". Electrochemistry 80, nr 10 (2012): 825–28. http://dx.doi.org/10.5796/electrochemistry.80.825.
Pełny tekst źródłaKITAJOU, Ayuko, Eiji KOBAYASHI i Shigeto OKADA. "Electrochemical Performance of a Novel Cathode material “LiFeOF” for Li-ion Batteries". Electrochemistry 83, nr 10 (2015): 885–88. http://dx.doi.org/10.5796/electrochemistry.83.885.
Pełny tekst źródłaPADILLA, J., V. SESHADRI, G. SOTZING i T. OTERO. "Maximum contrast from an electrochromic material". Electrochemistry Communications 9, nr 8 (sierpień 2007): 1931–35. http://dx.doi.org/10.1016/j.elecom.2007.05.004.
Pełny tekst źródłaLau, Hang Kuen. "Battery Materials Characterization Workflow for Effective Battery Electrode Manufacturing Processes". ECS Meeting Abstracts MA2022-02, nr 6 (9.10.2022): 590. http://dx.doi.org/10.1149/ma2022-026590mtgabs.
Pełny tekst źródłaOSAKA, Tetsuya, Toshiyuki MOMMA, Satoru KOMODA, Nobuhiro SHIRAISHI, Susumu KIKUYAMA i Kohji YUASA. "Electrochemical Properties of Chloranilic Acid and its Application to the Anode Material of Alkaline Secondary Batteries". Electrochemistry 67, nr 3 (5.03.1999): 238–42. http://dx.doi.org/10.5796/electrochemistry.67.238.
Pełny tekst źródłaINAMASU, Tokuo, Daisuke YOSHITOKU, Hiroyuki TANI i Noboru ONO. "Synthesis and Property of AAEE as Cross-link Type New Cathode Active Material for Lithium Battery". Electrochemistry 71, nr 9 (5.09.2003): 786–90. http://dx.doi.org/10.5796/electrochemistry.71.786.
Pełny tekst źródłaQiao, Yan, Shu-Juan Bao i Chang Ming Li. "Electrocatalysis in microbial fuel cells—from electrode material to direct electrochemistry". Energy & Environmental Science 3, nr 5 (2010): 544. http://dx.doi.org/10.1039/b923503e.
Pełny tekst źródłaDoménech, Antonio, Eugenio Coronado, Nora Lardiés, Carlos Martí Gastaldo, María Teresa Doménech-Carbó i Antonio Ribera. "Solid-state electrochemistry of LDH-supported polyaniline hybrid inorganic–organic material". Journal of Electroanalytical Chemistry 624, nr 1-2 (grudzień 2008): 275–86. http://dx.doi.org/10.1016/j.jelechem.2008.09.021.
Pełny tekst źródła