Gotowa bibliografia na temat „Material Electrochemistry”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Material Electrochemistry”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Material Electrochemistry"
McCreery, Richard, Adam Bergren, Amin Morteza-Najarian, Sayed Youssef Sayed i Haijun Yan. "Electron transport in all-carbon molecular electronic devices". Faraday Discuss. 172 (2014): 9–25. http://dx.doi.org/10.1039/c4fd00172a.
Pełny tekst źródłaAmbrosi, Adriano, i Martin Pumera. "Exfoliation of layered materials using electrochemistry". Chemical Society Reviews 47, nr 19 (2018): 7213–24. http://dx.doi.org/10.1039/c7cs00811b.
Pełny tekst źródłaXiang, Qian. "Research on Rechargeable Lithium Manganese Battery Material Electrochemical Roasting Performance Analysis". Advanced Materials Research 455-456 (styczeń 2012): 889–94. http://dx.doi.org/10.4028/www.scientific.net/amr.455-456.889.
Pełny tekst źródłaSu, Wei, Yu Chun Li, Fei Yu, Guo Hua Lu, Yuan Chen, Qun Hui Meng i Wei Xia Wang. "Electrochemical Research on Cl- which Destroys the Surface Passivation Film of T23 in Supercritical Water Tubes". Advanced Materials Research 413 (grudzień 2011): 383–90. http://dx.doi.org/10.4028/www.scientific.net/amr.413.383.
Pełny tekst źródłaTang, Yuxin, Yanyan Zhang, Wenlong Li, Bing Ma i Xiaodong Chen. "Rational material design for ultrafast rechargeable lithium-ion batteries". Chemical Society Reviews 44, nr 17 (2015): 5926–40. http://dx.doi.org/10.1039/c4cs00442f.
Pełny tekst źródłaBao, Bin, Boris Rivkin, Farzin Akbar, Dmitriy D. Karnaushenko, Vineeth Kumar Bandari, Laura Teuerle, Christian Becker, Stefan Baunack, Daniil Karnaushenko i Oliver G. Schmidt. "Digital Electrochemistry for On‐Chip Heterogeneous Material Integration". Advanced Materials 33, nr 26 (24.05.2021): 2101272. http://dx.doi.org/10.1002/adma.202101272.
Pełny tekst źródłaKapałka, Agnieszka, György Fóti i Christos Comninellis. "The importance of electrode material in environmental electrochemistry". Electrochimica Acta 54, nr 7 (luty 2009): 2018–23. http://dx.doi.org/10.1016/j.electacta.2008.06.045.
Pełny tekst źródłaBao, Bin, Boris Rivkin, Farzin Akbar, Dmitriy D. Karnaushenko, Vineeth Kumar Bandari, Laura Teuerle, Christian Becker, Stefan Baunack, Daniil Karnaushenko i Oliver G. Schmidt. "Digital Electrochemistry: Digital Electrochemistry for On‐Chip Heterogeneous Material Integration (Adv. Mater. 26/2021)". Advanced Materials 33, nr 26 (lipiec 2021): 2170204. http://dx.doi.org/10.1002/adma.202170204.
Pełny tekst źródłaSun, Gang, Chenxiao Jia, Shuanlong Di, Jianning Zhang, Qinghua Du i Xiujuan Qin. "The Effect of Thermal Treatment Temperature and Duration on Electrochemistry Performance of LiNi1/3Co1/3Mn1/3O2 Cathode Materials for Lithium-ion Batteries". Current Nanoscience 14, nr 5 (23.07.2018): 440–47. http://dx.doi.org/10.2174/1573413714666180320145227.
Pełny tekst źródłaHIGUCHI, Takeshi, Daiki MURAKAMI, Hidetoshi NISHIYAMA, Mitsuo SUGA, Atsushi TAKAHARA i Hiroshi JINNAI. "Nanometer-scale Real-space Observation and Material Processing for Polymer Materials under Atmospheric Pressure: Application of Atmospheric Scanning Electron Microscopy". Electrochemistry 82, nr 5 (2014): 359–63. http://dx.doi.org/10.5796/electrochemistry.82.359.
Pełny tekst źródłaRozprawy doktorskie na temat "Material Electrochemistry"
Bolger, Paul Thomas. "The electrochemistry of silver co-ordination complexes". Thesis, Queen's University Belfast, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287292.
Pełny tekst źródłaSiritanaratkul, Bhavin. "Enzyme-material composites for solar-driven reactions". Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:55df8993-254b-4960-8ef4-fd9624206f3b.
Pełny tekst źródłaBraham, Victoria Jane. "Corrosion of aluminium in contact with cutting fluids : electrochemistry of corrosion". Thesis, University of Newcastle Upon Tyne, 1997. http://hdl.handle.net/10443/797.
Pełny tekst źródłaJia, Jingshu. "Fabrication of high quality one material anode and cathode for water electrolysis in alkaline solution /". View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?EVNG%202008%20JIA.
Pełny tekst źródłaLibot, Cecile. "The influence of cathode material on the reduction of aryl carbonyl compounds : formation of radicals". Thesis, University of Southampton, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313211.
Pełny tekst źródłaGrosu, Cristina. "Correlation between structure and electrochemistry of LiMO2 cathode materials (M = Ni, Co)". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13355/.
Pełny tekst źródłaRanganathan, Srikanth. "Preparation, modification and characterization of a novel carbon electrode material for applications in electrochemistry and molecular electronics /". The Ohio State University, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486398528558482.
Pełny tekst źródłaTan, Chuting Tan. "Radiation-Induced Material and Performance Degradation of Electrochemical Systems". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu151448116966595.
Pełny tekst źródłaBeaussant, Törne Karin. "Investigation of corrosion properties of metals for degradable implant applications". Doctoral thesis, KTH, Materialfysik, MF, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215970.
Pełny tekst źródłaDegradable metallic implants are a new class of biomaterials with potentialto replace permanent materials in temporary applications to reduce therisk of long term adverse effects.This thesis focuses on in vitro testing of zinc and magnesium based metals.As new degradable metals are developed screening of new materials within vitro test methods is an attractive option to avoid unnecessary, time consumingand expensive animal studies. The influence of factors such as ioniccomposition of the test solution, buffer system, strain and alloy compositionwas investigated. By employing electrochemical in situ techniques such asimpedance spectroscopy it is possible to study the metal-solution interfaceand determine the properties of the corroding surface. Ex situ surface characterizationtechniques such as scanning electron microscopy and infraredspectroscopy were then used to complement the results of the electrochemicalmeasurements.The importance of appropriate selection of the test solution is highlightedin this work. Zinc was found to corrode in Ringer’s solution by a mechanismcloser to in vivo corrosion than in a phosphate buffered saline solution(PBS).Ringer’s solution is therefore the more appropriate test environment for longterm evaluation of zinc based metals.When evaluating the corrosion of Zn-Mg and Zn-Ag alloys in Ringer’ssolution selective dissolution was found to occur for both types of alloys. Localprecipitation and formation of a porous, less protective, layer of corrosionproducts was found for Zn-Mg alloys. The selective dissolution of Zn-Agalloy caused an enrichment of AgZn3 on the surface which may affect thebiocompatibility of the alloy.The use of HEPES to maintain the pH of the test solution increasedthe corrosion rate of magnesium due to formation of a less protective layerof corrosion products. Magnesium corrosion should therefore preferably bestudied in solutions where the pH is maintained by the biological buffer systemCO2/H2CO3.In addition to saline solutions human whole blood and plasma were evaluatedas more clinically relevant in vitro environments. They were found toproduce reproducible results and to be suitable for short term experiments.Formation of a corrosion product layer comprised of both organic and inorganicmaterial was detected on zinc in both plasma and whole blood.During anodic polarization the adsorption of organic species on the zincsurface was found to increase the surface coverage of Zn ions in whole blood.The increased surface coverage then allowed for precipitation of a protectivelayer of Zn5(PO4)3 and a subsequent decrease in corrosion rate at higherpotentials.When subjecting zinc samples to strain the organic/inorganic corrosionproduct formed in whole blood was observed by impedance spectroscopy toprevent micro cracking and premature failure.The cracking of magnesium alloy samples under applied strain was alsocharacterized by impedance. Changes in surface properties due to crack initiation
QC 20171019
Sobkowiak, Adam. "LiFeSO4F as a Cathode Material for Lithium-Ion Batteries : Synthesis, Structure, and Function". Doctoral thesis, Uppsala universitet, Institutionen för kemi - Ångström, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-262715.
Pełny tekst źródłaKsiążki na temat "Material Electrochemistry"
Billingham, Michael A. Electrochemistry of a thick-film electrochromic display material. Manchester: UMIST, 1993.
Znajdź pełny tekst źródłaElectrochemistry of porous materials. Boca Raton: Taylor & Francis, 2010.
Znajdź pełny tekst źródłaEftekhari, Ali. Nanostructured materials in electrochemistry. Redaktor Wiley online library. Weinheim: Wiley-VCH, 2008.
Znajdź pełny tekst źródłaDavid, Pye L., Montenero Angelo i Joseph Innocent, red. Properties of glass-forming melts. Boca Raton: Taylor & Francis, 2005.
Znajdź pełny tekst źródłaInternational Society of Electrochemistry. Meeting. Electrochemical approach to selected corrosion and corrosion control studies: Papers from 50th ISE Meeting, Pavia, September 1999. London: Published for the European Federation of Corrosion by IOM Communications, 2000.
Znajdź pełny tekst źródłaGary, Hodes, red. Electrochemistry of nanomaterials. Weinheim: Wiley-VCH, 2001.
Znajdź pełny tekst źródłaJacek, Lipkowski, i Ross Philip N, red. The Electrochemistry of novel materials. New York, N.Y: VCH, 1994.
Znajdź pełny tekst źródłaR, Lindström, European Federation of Corrosion i Institute of Materials, Minerals, and Mining., red. The use of electrochemical scanning tunnelling microscopy (EC-STM) in corrosion analysis: Reference material and procedural guidelines. Cambridge, England: Woodhead, 2007.
Znajdź pełny tekst źródłaP, Stradyn' Ya, red. Aleksandr Naumovich Frumkin: Ocherki, vospominaniya, materialy. Moskva: Nauka, 1989.
Znajdź pełny tekst źródłaM, Baizer Manuel, red. The electrochemistry of biomass and derived materials. Washington, D.C: American Chemical Society, 1985.
Znajdź pełny tekst źródłaCzęści książek na temat "Material Electrochemistry"
Britz, Dieter. "Electronic Supplementary Material". W Digital Simulation in Electrochemistry, 330. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11009375_21.
Pełny tekst źródłaYokokawa, Toshio, Katsuyuki Kawamura i Keita Suzumura. "Electrochemistry of Silicate Melts". W Dynamic Processes of Material Transport and Transformation in the Earth’s Interior, 83–96. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-3314-2_6.
Pełny tekst źródłaJu, Wen, Alexander Bagger, Nathaniel Leonard, Xingli Wang, Jan Rossmeisl i Peter Strasser. "Chapter 4. Nanostructures for CO2 Reduction: From Theoretical Insight to Material Design". W Carbon Dioxide Electrochemistry, 151–96. Cambridge: Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781788015844-00151.
Pełny tekst źródłaPanizza, Marco. "Importance of Electrode Material in the Electrochemical Treatment of Wastewater Containing Organic Pollutants". W Electrochemistry for the Environment, 25–54. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-68318-8_2.
Pełny tekst źródłaLee, Gyoung-Ja, i Su-Il Pyun. "Synthesis and Characterization of Nanoporous Carbon and its Electrochemical Application to Electrode Material for Supercapacitors". W Modern Aspects of Electrochemistry, 139–95. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-46108-3_2.
Pełny tekst źródłaKelly, James J., i S. H. Goods. "X-ray Lithography Techniques, LIGA-Based Microsystem Manufacturing: The Electrochemistry of Through-Mold Deposition and Material Properties". W Electrochemistry at the Nanoscale, 79–138. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-73582-5_3.
Pełny tekst źródłaFreiesleben Hansen, Per. "Electrochemistry". W The Science of Construction Materials, 196–235. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70898-8_6.
Pełny tekst źródłaPlascencia, Gabriel, i David Jaramillo. "Electrochemistry". W Basic Thermochemistry in Materials Processing, 65–94. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53815-0_3.
Pełny tekst źródłaWeber, G., N. Jakubowski i D. Stuewer. "Speciation of platinum in plant material. A combination of chromatography, elemental mass spectrometry and electrochemistry". W Anthropogenic Platinum-Group Element Emissions, 183–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59678-0_19.
Pełny tekst źródłaAdarakatti, Prashanth Shivappa, i Samrat Devaramani. "2D materials for sensing applications". W Electrochemistry, 44–83. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781788017039-00044.
Pełny tekst źródłaStreszczenia konferencji na temat "Material Electrochemistry"
Pei, Qibing, Gang Yu, Chi Zhang, Yang Yang i Alan J. Heeger. "Polymer Light-Emitting Electrochemical Cells". W Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/otfa.1995.thc.2.
Pełny tekst źródłaAndo, Yuji, i Tadayoshi Tanaka. "Proposal of Simultaneous Production Method of Hydrogen and Hydrogen Peroxide From Water Using Solar Photo-Electrochemistry". W ASME 2003 International Solar Energy Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/isec2003-44203.
Pełny tekst źródłaGenevey, Daniel B., Michael R. von Spakovsky, Michael W. Ellis, Douglas J. Nelson, Benoiˆt Olsommer, Fre´de´ric Topin i Nathan Siegel. "Transient Model of Heat, Mass, and Charge Transfer as Well as Electrochemistry in the Cathode Catalyst Layer of a PEMFC". W ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33322.
Pełny tekst źródłaChiu, W. K. S., A. V. Virkar, K. L. Reifsnider, F. Rabbi i Q. Liu. "HeteroFoaMs: Electrode Modeling in Nano-Structured Heterogeneous Materials for Energy Systems". W ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology collocated with ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/fuelcell2011-54950.
Pełny tekst źródłaLadpli, Purim, Raphael Nardari, Raunaq Rewari, Hongjian Liu, Michael Slater, Keith Kepler, Yinan Wang, Fotis Kopsaftopoulos i Fu-Kuo Chang. "Multifunctional Energy Storage Composites: Design, Fabrication, and Experimental Characterization". W ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/es2016-59416.
Pełny tekst źródłaStamps, Michael A., i Hsiao-Ying Shadow Huang. "Mixed Modes Fracture and Fatigue Evaluation for Lithium-Ion Batteries". W ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88037.
Pełny tekst źródłaSubramanian, A., J. P. Sullivan, J. Y. Huang, N. Hudak, Y. Zhan, J. Lou i C. M. Wang. "On-chip electrochemistry: A nanofabricated platform for single nanowire battery electrochemistry". W 2010 IEEE Nanotechnology Materials and Devices Conference (NMDC). IEEE, 2010. http://dx.doi.org/10.1109/nmdc.2010.5651972.
Pełny tekst źródłaAndersson, Martin, Jinliang Yuan, Bengt Sunde´n, Ting Shuai Li i Wei Guo Wang. "Modeling Validation and Simulation of an Anode Supported SOFC Including Mass and Heat Transport, Fluid Flow and Chemical Reactions". W ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology collocated with ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/fuelcell2011-54006.
Pełny tekst źródłaPatrício, S. G., A. I. B. Rondão, A. Jamale, N. Martins i F. M. B. Marques. "CO2 separation membranes: innovative combination of known materials". W 2nd International Seminar on Industrial Innovation in Electrochemistry. São Paulo: Editora Blucher, 2016. http://dx.doi.org/10.5151/chempro-s3ie2016-07.
Pełny tekst źródłaKim, Doyeon, i Kwang J. Kim. "Electrochemistry of ionic polymer-metal composite". W Smart Structures and Materials, redaktor Yoseph Bar-Cohen. SPIE, 2005. http://dx.doi.org/10.1117/12.592054.
Pełny tekst źródłaRaporty organizacyjne na temat "Material Electrochemistry"
Kelly, James J., i Steven Howard Goods. LIGA-based microsystem manufacturing:the electrochemistry of through-mold depostion and material properties. Office of Scientific and Technical Information (OSTI), czerwiec 2005. http://dx.doi.org/10.2172/876336.
Pełny tekst źródłaMartin, C. R., M. J. Tierney, I. F. Cheng, L. S. Van Dyke, Z. Cai, J. R. McBride i C. J. Brumlik. Nano- and Microstructures in Chemistry, Electrochemistry, and Materials Science. Fort Belvoir, VA: Defense Technical Information Center, marzec 1989. http://dx.doi.org/10.21236/ada206296.
Pełny tekst źródłaBarnett, Scott, Ken Poeppelmeier, Tom Mason, Lawrence Marks i Peter Voorhees. High Performance Nano-Crystalline Oxide Fuel Cell Materials. Defects, Structures, Interfaces, Transport, and Electrochemistry. Office of Scientific and Technical Information (OSTI), wrzesień 2016. http://dx.doi.org/10.2172/1320742.
Pełny tekst źródła