Artykuły w czasopismach na temat „Mass spectrometry”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Mass spectrometry.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Mass spectrometry”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

KASAMA, Takeshi. "Biological Mass Spectrometry. Quadrupole Mass Spectrometer." Journal of the Mass Spectrometry Society of Japan 44, nr 3 (1996): 393–405. http://dx.doi.org/10.5702/massspec.44.393.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Glish, Gary L., i David J. Burinsky. "Hybrid mass spectrometers for tandem mass spectrometry". Journal of the American Society for Mass Spectrometry 19, nr 2 (luty 2008): 161–72. http://dx.doi.org/10.1016/j.jasms.2007.11.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Busch, Kenneth L., Gary L. Glish, Scott A. McLuckey i John J. Monaghan. "Mass spectrometry/mass spectrometry: techniques and applications of tandem mass spectrometry". Analytica Chimica Acta 237 (1990): 509. http://dx.doi.org/10.1016/s0003-2670(00)83956-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Futrell, Jean H. "Mass spectrometry/mass spectrometry: Techniques and applications of tandem mass spectrometry". Microchemical Journal 41, nr 2 (kwiecień 1990): 246–47. http://dx.doi.org/10.1016/0026-265x(90)90124-n.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Moriarty, F. "Mass spectrometry/mass spectrometry. Techniques and applications of tandem mass spectrometry". Environmental Pollution 61, nr 3 (1989): 261. http://dx.doi.org/10.1016/0269-7491(89)90246-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Cooks, R. G. "Mass Spectrometry/Mass Spectrometry. Techniques and Applications of Tandem Mass Spectrometry". International Journal of Mass Spectrometry and Ion Processes 93, nr 2 (październik 1989): 265–66. http://dx.doi.org/10.1016/0168-1176(89)80103-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Pinkston, J. David, Martin Rabb, J. Throck Watson i John Allison. "New time‐of‐flight mass spectrometer for improved mass resolution, versatility, and mass spectrometry/mass spectrometry studies". Review of Scientific Instruments 57, nr 4 (kwiecień 1986): 583–92. http://dx.doi.org/10.1063/1.1138874.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Glish, Gary L., i Scott A. McLuckey. "Hybrid Instruments for Mass Spectrometry/Mass Spectrometry". Instrumentation Science & Technology 15, nr 1 (styczeń 1986): 1–36. http://dx.doi.org/10.1080/10739148608543593.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Charles, M. Judith, i Yves Tondeur. "Choosing between high-resolution mass spectrometry and mass spectrometry/mass spectrometry environmental applications". Environmental Science & Technology 24, nr 12 (grudzień 1990): 1856–60. http://dx.doi.org/10.1021/es00082a011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

KONDO, Fumio, i Ken-ichi HARADA. "Biological Mass Spectrometry. Mass Spectrometric Analysis of Cyanobacterial Toxins." Journal of the Mass Spectrometry Society of Japan 44, nr 3 (1996): 355–76. http://dx.doi.org/10.5702/massspec.44.355.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Wu, Junhan, Wenpeng Zhang i Zheng Ouyang. "On-Demand Mass Spectrometry Analysis by Miniature Mass Spectrometer". Analytical Chemistry 93, nr 15 (5.04.2021): 6003–7. http://dx.doi.org/10.1021/acs.analchem.1c00575.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

NOHMI, Takashi, i Tetsuya MIYAGISHI. "Future Mass from Miniaturized Mass Spectrometry to Micro Mass Spectrometry." Journal of the Mass Spectrometry Society of Japan 51, nr 1 (2003): 54–66. http://dx.doi.org/10.5702/massspec.51.54.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Guerrera, Ida Chiara, i Oliver Kleiner. "Application of Mass Spectrometry in Proteomics". Bioscience Reports 25, nr 1-2 (4.02.2005): 71–93. http://dx.doi.org/10.1007/s10540-005-2849-x.

Pełny tekst źródła
Streszczenie:
Mass spectrometry has arguably become the core technology in proteomics. The application of mass spectrometry based techniques for the qualitative and quantitative analysis of global proteome samples derived from complex mixtures has had a big impact in the understanding of cellular function. Here, we give a brief introduction to principles of mass spectrometry and instrumentation currently used in proteomics experiments. In addition, recent developments in the application of mass spectrometry in proteomics are summarised. Strategies allowing high-throughput identification of proteins from highly complex mixtures include accurate mass measurement of peptides derived from total proteome digests and multidimensional peptide separations coupled with mass spectrometry. Mass spectrometric analysis of intact proteins permits the characterisation of protein isoforms. Recent developments in stable isotope labelling techniques and chemical tagging allow the mass spectrometry based differential display and quantitation of proteins, and newly established affinity procedures enable the targeted characterisation of post-translationally modified proteins. Finally, advances in mass spectrometric imaging allow the gathering of specific information on the local molecular composition, relative abundance and spatial distribution of peptides and proteins in thin tissue sections.
Style APA, Harvard, Vancouver, ISO itp.
14

ITO, Yuji, i Masahiro MATSUI. "Mass Spectrometry". Journal of the Japan Society of Colour Material 63, nr 7 (1990): 419–29. http://dx.doi.org/10.4011/shikizai1937.63.419.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Lederman, Lynne. "Mass Spectrometry". BioTechniques 46, nr 6 (maj 2009): 399–401. http://dx.doi.org/10.2144/000113165.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Yates, John R. "Mass spectrometry". Trends in Genetics 16, nr 1 (styczeń 2000): 5–8. http://dx.doi.org/10.1016/s0168-9525(99)01879-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Burlingame, A. L., D. S. Millington, D. L. Norwood i D. H. Russell. "Mass spectrometry". Analytical Chemistry 62, nr 12 (15.06.1990): 268–303. http://dx.doi.org/10.1021/ac00211a020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Burlingame, A. L., D. Maltby, D. H. Russell i P. T. Holland. "Mass spectrometry". Analytical Chemistry 60, nr 12 (15.06.1988): 294–342. http://dx.doi.org/10.1021/ac00163a021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Burlingame, A. L., Robert K. Boyd i Simon J. Gaskell. "Mass Spectrometry". Analytical Chemistry 68, nr 12 (styczeń 1996): 599–652. http://dx.doi.org/10.1021/a1960021u.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Burlingame, A. L., Robert K. Boyd i Simon J. Gaskell. "Mass Spectrometry". Analytical Chemistry 70, nr 16 (sierpień 1998): 647–716. http://dx.doi.org/10.1021/a1980023+.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Burlingame, A. L., T. A. Baillie i D. H. Russell. "Mass spectrometry". Analytical Chemistry 64, nr 12 (15.06.1992): 467–502. http://dx.doi.org/10.1021/ac00036a025.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Kinter, Michael. "Mass spectrometry". Analytical Chemistry 67, nr 12 (15.06.1995): 493–97. http://dx.doi.org/10.1021/ac00108a034.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Caprioli, Richard, i Alan Wu. "Mass Spectrometry". Analytical Chemistry 65, nr 12 (15.06.1993): 470–74. http://dx.doi.org/10.1021/ac00060a619.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Burlingame, A. L., Robert K. Boyd i Simon J. Gaskell. "Mass Spectrometry". Analytical Chemistry 66, nr 12 (czerwiec 1994): 634–83. http://dx.doi.org/10.1021/ac00084a024.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Burlingame, A. L., Thomas A. Baillie i Peter J. Derrick. "Mass spectrometry". Analytical Chemistry 58, nr 5 (kwiecień 1986): 165–211. http://dx.doi.org/10.1021/ac00296a015.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Grotemeyer, Jürgen, Klaus G. Heumann i Wolf D. Lehmann. "Mass spectrometry". Analytical and Bioanalytical Chemistry 386, nr 1 (8.08.2006): 21–23. http://dx.doi.org/10.1007/s00216-006-0653-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Van Thuijl, J. "Mass spectrometry". TrAC Trends in Analytical Chemistry 5, nr 3 (marzec 1986): IX—X. http://dx.doi.org/10.1016/0165-9936(86)85017-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Grotemeyer, J. "Mass spectrometry". Analytical and Bioanalytical Chemistry 377, nr 7-8 (1.12.2003): 1097. http://dx.doi.org/10.1007/s00216-003-2292-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Vickerman, J. C. "Mass spectrometry". Endeavour 11, nr 2 (styczeń 1987): 108. http://dx.doi.org/10.1016/0160-9327(87)90265-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Jannetto, Paul J., i Darlington Danso. "Mass spectrometry". Clinical Biochemistry 82 (sierpień 2020): 1. http://dx.doi.org/10.1016/j.clinbiochem.2020.06.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

P, D. "Mass Spectrometry". Journal of Molecular Structure 160, nr 1-2 (sierpień 1987): 183. http://dx.doi.org/10.1016/0022-2860(87)87016-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Robinson, Carol, i Robert J. Cotter. "Mass spectrometry". Proteins: Structure, Function, and Genetics 33, S2 (1998): 1–2. http://dx.doi.org/10.1002/(sici)1097-0134(1998)33:2+<1::aid-prot1>3.0.co;2-m.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Lhotka, Radek, i Petr Vodička. "Aerosol Mass Spectrometry". Chemické listy 118, nr 5 (15.05.2024): 254–62. http://dx.doi.org/10.54779/chl20240254.

Pełny tekst źródła
Streszczenie:
Mass spectrometry is widely used in various scientific fields. In atmospheric chemistry, there has been a long call for a detailed on-line analysis of the chemical composition of aerosol particles (i.e., particles in the solid or liquid state) in the atmosphere resulting in the development of the so-called aerosol mass spectrometers in the past 20 years. These instruments allow the measurement of the chemical composition of particles with sizes of ca. 50–800 nm, typically at minute resolution. Their development and possible applications are discussed in this review.
Style APA, Harvard, Vancouver, ISO itp.
34

Termopoli, Veronica, Maurizio Piergiovanni, Davide Ballabio, Viviana Consonni, Emmanuel Cruz Muñoz i Fabio Gosetti. "Condensed Phase Membrane Introduction Mass Spectrometry: A Direct Alternative to Fully Exploit the Mass Spectrometry Potential in Environmental Sample Analysis". Separations 10, nr 2 (17.02.2023): 139. http://dx.doi.org/10.3390/separations10020139.

Pełny tekst źródła
Streszczenie:
Membrane introduction mass spectrometry (MIMS) is a direct mass spectrometry technique used to monitor online chemical systems or quickly quantify trace levels of different groups of compounds in complex matrices without extensive sample preparation steps and chromatographic separation. MIMS utilizes a thin, semi-permeable, and selective membrane that directly connects the sample and the mass spectrometer. The analytes in the sample are pre-concentrated by the membrane depending on their physicochemical properties and directly transferred, using different acceptor phases (gas, liquid or vacuum) to the mass spectrometer. Condensed phase (CP) MIMS use a liquid as a medium, extending the range to new applications to less-volatile compounds that are challenging or unsuitable to gas-phase MIMS. It directly allows the rapid quantification of selected compounds in complex matrices, the online monitoring of chemical reactions (in real-time), as well as in situ measurements. CP-MIMS has expanded beyond the measurement of several organic compounds because of the use of different types of liquid acceptor phases, geometries, dimensions, and mass spectrometers. This review surveys advancements of CP-MIMS and its applications to several molecules and matrices over the past 15 years.
Style APA, Harvard, Vancouver, ISO itp.
35

NAGAO, Keisuke. "Fundamentals of Mass Spectrometry -Isotope Ratio Mass Spectrometry-". Journal of the Mass Spectrometry Society of Japan 59, nr 2 (2011): 35–49. http://dx.doi.org/10.5702/massspec.59.35.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Musselman, Brian D. "K. Busch, G. Glish and S. Mcluckey. Mass spectrometry/mass spectrometry: Techniques and applications of tandem mass spectrometry, VCH publishing, New York, 1988. Mass Spectrometry/Mass Spectrometry". Biological Mass Spectrometry 18, nr 10 (październik 1989): 942. http://dx.doi.org/10.1002/bms.1200181017.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

LaiHing, K., P. Y. Cheng, T. G. Taylor, K. F. Willey, M. Peschke i M. A. Duncan. "Photodissociation in a reflectron time-of-flight mass spectrometer: a novel mass spectrometry/mass spectrometry configuration for high-mass systems". Analytical Chemistry 61, nr 13 (lipiec 1989): 1458–60. http://dx.doi.org/10.1021/ac00188a031.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Meier, Heiko, i Gottfried Blaschke. "Capillary electrophoresis–mass spectrometry, liquid chromatography–mass spectrometry and nanoelectrospray-mass spectrometry of praziquantel metabolites". Journal of Chromatography B: Biomedical Sciences and Applications 748, nr 1 (październik 2000): 221–31. http://dx.doi.org/10.1016/s0378-4347(00)00397-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Dogra, Akshay. "A Thorough Examination of the Recent Advances in Mass Spectrometry". International Journal for Research in Applied Science and Engineering Technology 11, nr 7 (31.07.2023): 1731–41. http://dx.doi.org/10.22214/ijraset.2023.54964.

Pełny tekst źródła
Streszczenie:
Abstract: Mass spectrometry has become an essential tool in pharmaceutical analysis, revolutionizing drug development, quality assurance, and our understanding of complex biological systems. This review provides a comprehensive overview of recent advances in mass spectrometry for pharmaceutical analysis. We discuss the fundamentals of mass spectrometry, including ionization and mass analysis principles, as well as the various types of mass spectrometers used in pharmaceutical analysis. We explore high-resolution mass spectrometry (HRMS), tandem mass spectrometry (MS/MS), ambient ionization mass spectrometry, and mass spectrometry imaging (MSI), highlighting their applications in drug characterization, quantification, imaging, and biomarker discovery. Furthermore, we examine the challenges faced by mass spectrometry, such as matrix effects and data interpretation, and discuss emerging trends and future perspectives. By understanding the recent advancements and addressing the challenges, mass spectrometry can continue to drive advancements in pharmaceutical analysis and quality assurance
Style APA, Harvard, Vancouver, ISO itp.
40

Cooks, R. G., K. A. Cox i J. D. Williams. "High-performance mass spectrometry with the ion trap mass spectrometer". Journal of Protein Chemistry 11, nr 4 (sierpień 1992): 376–77. http://dx.doi.org/10.1007/bf01673733.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Budzikiewicz, H. "Selected reviews on mass spectrometric topics. XXVIII. Tandem mass spectrometry". Mass Spectrometry Reviews 8, nr 2 (marzec 1989): 119. http://dx.doi.org/10.1002/mas.1280080204.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Budzikiewicz, H. "Selected reviews on mass spectrometric topics. XLV. Pyrolysis-mass spectrometry". Mass Spectrometry Reviews 11, nr 3 (maj 1992): 247. http://dx.doi.org/10.1002/mas.1280110304.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Budzikiewicz, H. "Selected reviews on mass spectrometric topics. XLVII. Accelerator mass spectrometry". Mass Spectrometry Reviews 11, nr 5 (wrzesień 1992): 445. http://dx.doi.org/10.1002/mas.1280110505.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Roberts, Norman B., Brian N. Green i Michael Morris. "Potential of electrospray mass spectrometry for quantifying glycohemoglobin". Clinical Chemistry 43, nr 5 (1.05.1997): 771–78. http://dx.doi.org/10.1093/clinchem/43.5.771.

Pełny tekst źródła
Streszczenie:
Abstract An electrospray ionization–mass spectrometric procedure has been developed for determining glycohemoglobin. Whole-blood samples from 78 diabetic and 50 nondiabetic subjects (glycation range 3–15%, as determined by electrospray mass spectrometry) were diluted 500-fold in an acidic denaturing solvent and introduced directly into a mass spectrometer. The resulting mass spectra were then processed to estimate the percentage of glycohemoglobin present in the sample. Total analysis time, including plotting the spectra and computing the percentage of glycation, was ∼3 min. The imprecision (CV) of the method was &lt;5.1% for inter- and intrabatch analyses for total glycohemoglobin in the range 3.6–14%. Comparison of the mass spectrometric results with those from established affinity chromatographic procedures showed good overall agreement. The relative glycation of the α- and β-chains was determined directly and was shown to be constant (0.64:1) over the glycation range measured. Only single glucose attachment to both the α- and β-chains was observed.
Style APA, Harvard, Vancouver, ISO itp.
45

Tian, Qingguo, i Steven J. Schwartz. "Mass Spectrometry and Tandem Mass Spectrometry of Citrus Limonoids". Analytical Chemistry 75, nr 20 (październik 2003): 5451–60. http://dx.doi.org/10.1021/ac030115w.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Shoji, Yuki, Mari Yotsu-Yamashita, Teruo Miyazawa i Takeshi Yasumoto. "Electrospray Ionization Mass Spectrometry of Tetrodotoxin and Its Analogs: Liquid Chromatography/Mass Spectrometry, Tandem Mass Spectrometry, and Liquid Chromatography/Tandem Mass Spectrometry". Analytical Biochemistry 290, nr 1 (marzec 2001): 10–17. http://dx.doi.org/10.1006/abio.2000.4953.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Cooks, R. Graham, Alan K. Jarmusch, Christina R. Ferreira i Valentina Pirro. "Skin molecule maps using mass spectrometry". Proceedings of the National Academy of Sciences 112, nr 17 (20.04.2015): 5261–62. http://dx.doi.org/10.1073/pnas.1505313112.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Van Berkel, Gary J., Gary L. Glish, Scott A. McLuckey i Albert A. Tuinman. "High-pressure ammonia chemical ionization mass spectrometry and mass spectrometry/mass spectrometry for porphyrin structure determination". Energy & Fuels 4, nr 6 (listopad 1990): 720–29. http://dx.doi.org/10.1021/ef00024a018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Hasegawa, Yuki, Misako Iga, Masahiko Kimura, Yosuke Shigematsu i Seiji Yamaguchi. "Prenatal diagnosis for organic acid disorders using two mass spectrometric methods, gas chromatography mass spectrometry and tandem mass spectrometry". Journal of Chromatography B 823, nr 1 (sierpień 2005): 13–17. http://dx.doi.org/10.1016/j.jchromb.2005.04.020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Konstantinov, M. A., D. D. Zhdanov i I. Yu Toropygin. "Quantitative mass spectrometry with <sup>18</sup>O labelling as an alternative approach for determining protease activity: an example of trypsin". Biological Products. Prevention, Diagnosis, Treatment 24, nr 1 (6.02.2024): 46–60. http://dx.doi.org/10.30895/2221-996x-2024-24-1-46-60.

Pełny tekst źródła
Streszczenie:
SCIENTIFIC RELEVANCE. In the quality control of proteolytic enzyme components of medicinal products, the activity of proteases is determined by spectrophotometry, which involves mea­suring the amidase or esterase activity using a synthetic substrate and the proteolytic activity using the Anson method. These methods require special substrates and have low sensitivity; their specificity may be insufficient, which may lead to serious errors. Quantitative mass spectrometry is an alternative approach to protease activity assays, which involves adding an isotope-labelled peptide to hydrolysates of the test enzyme. This approach allows determining the activity of proteases, notably, by the hydrolysis of specific peptide bonds, while simulta­neously confirming the identity and specificity of the test sample. Quantitative mass spectrometry has high sensitivity and does not require special substrates.AIM. This study aimed to investigate the possibility of enzymatic activity assay and enzyme identification by quantitative mass spectrometry with 18O labelling through an example of trypsin with casein.MATERIALS AND METHODS. The study used trypsin, casein, and H218O (Izotop, Russia). Peptide separation was performed using an Agilent 1100 HPLC system; mass spectra were obtained using a Bruker Ultraflex II MALDI-TOF/TOF mass spectrometer. Quantitative mass spectrometry was performed using a standard peptide, which was obtained from casein by tryptic digestion and HPLC purification. For 18O labelling, the authors dried the peptide and incubated it in H218О water. The quantitative analysis of the product was carried out using MALDI-TOF mass spectrometry. The authors used quantitative mass spectrometry with 18O labelling to determine enzymatic activity and calculate the Michaelis constant (KM).RESULTS. Following the tryptic digestion of casein, the authors identified the fragments corre­sponding to casein chains. The authors produced the isotope-labelled standard peptide and calculated its concentration using mass spectrometry. The authors determined the rate of casein digestion by trypsin and calculated the KM for trypsin, which was 13.65±0.60 μM. The standard deviation for repeated measurements showed that the mass-spectrometric method had a lower error of measurement than the spectrophotometric method. The sensitivity threshold for the mass-spectrometric method was 0.50±0.08 μM.CONCLUSIONS. The results obtained with trypsin confirm the possibility of enzymatic activity determination by the proposed method of quantitative mass spectrometry with 18O labelling. According to the sensitivity evaluation results, this method can be used for the simultaneous determination of enzyme activity, identity, and specificity. The proposed mass spectrometry approach is universal, it does not require expensive materials and reagents, and it can be easily adapted to determine the activity of virtually any protease.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii