Artykuły w czasopismach na temat „Mass Spectrometric Study - Atmospheric Compounds”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Mass Spectrometric Study - Atmospheric Compounds”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Röhler, Laura, Martin Schlabach, Peter Haglund, Knut Breivik, Roland Kallenborn i Pernilla Bohlin-Nizzetto. "Non-target and suspect characterisation of organic contaminants in Arctic air – Part 2: Application of a new tool for identification and prioritisation of chemicals of emerging Arctic concern in air". Atmospheric Chemistry and Physics 20, nr 14 (29.07.2020): 9031–49. http://dx.doi.org/10.5194/acp-20-9031-2020.
Pełny tekst źródłaBrüggemann, Martin, Laurent Poulain, Andreas Held, Torsten Stelzer, Christoph Zuth, Stefanie Richters, Anke Mutzel i in. "Real-time detection of highly oxidized organosulfates and BSOA marker compounds during the F-BEACh 2014 field study". Atmospheric Chemistry and Physics 17, nr 2 (31.01.2017): 1453–69. http://dx.doi.org/10.5194/acp-17-1453-2017.
Pełny tekst źródłaZogka, Antonia G., Manolis N. Romanias i Frederic Thevenet. "Formaldehyde and glyoxal measurement deploying a selected ion flow tube mass spectrometer (SIFT-MS)". Atmospheric Measurement Techniques 15, nr 7 (5.04.2022): 2001–19. http://dx.doi.org/10.5194/amt-15-2001-2022.
Pełny tekst źródłaAhn, Yun Gyong, So Hyeon Jeon, Hyung Bae Lim, Na Rae Choi, Geum-Sook Hwang, Yong Pyo Kim i Ji Yi Lee. "Analysis of Polycyclic Aromatic Hydrocarbons in Ambient Aerosols by Using One-Dimensional and Comprehensive Two-Dimensional Gas Chromatography Combined with Mass Spectrometric Method: A Comparative Study". Journal of Analytical Methods in Chemistry 2018 (2018): 1–9. http://dx.doi.org/10.1155/2018/8341630.
Pełny tekst źródłaRincón, Angela G., Ana I. Calvo, Mathias Dietzel i Markus Kalberer. "Seasonal differences of urban organic aerosol composition – an ultra-high resolution mass spectrometry study". Environmental Chemistry 9, nr 3 (2012): 298. http://dx.doi.org/10.1071/en12016.
Pełny tekst źródłaSchneider, J., S. Borrmann, A. G. Wollny, M. Bläsner, N. Mihalopoulos, K. Oikonomou, J. Sciare, A. Teller, Z. Levin i D. R. Worsnop. "Online mass spectrometric aerosol measurements during the MINOS campaign (Crete, August 2001)". Atmospheric Chemistry and Physics 4, nr 1 (23.01.2004): 65–80. http://dx.doi.org/10.5194/acp-4-65-2004.
Pełny tekst źródłaAlsaggaf, Wejdan T. "The Chemistry of Paper in Paper Spray Ionization Mass Spectrometry". International Journal of Chemistry 12, nr 1 (10.10.2019): 16. http://dx.doi.org/10.5539/ijc.v12n1p16.
Pełny tekst źródłaMüller, L., M. C. Reinnig, K. H. Naumann, H. Saathoff, T. F. Mentel, N. M. Donahue i T. Hoffmann. "Formation of 3-methyl-1,2,3-butanetricarboxylic acid via gas phase oxidation of pinonic acid – a mass spectrometric study of SOA aging". Atmospheric Chemistry and Physics 12, nr 3 (8.02.2012): 1483–96. http://dx.doi.org/10.5194/acp-12-1483-2012.
Pełny tekst źródłaKhasanov, U., SS Iskhakova i DT Usmanov. "Examination of the effect of air atmosphere on heterogeneous reactions under surface ionization of psychotropic drug molecules". European Journal of Mass Spectrometry 26, nr 6 (grudzień 2020): 409–18. http://dx.doi.org/10.1177/1469066720976016.
Pełny tekst źródłaRiva, Matthieu, Pekka Rantala, Jordan E. Krechmer, Otso Peräkylä, Yanjun Zhang, Liine Heikkinen, Olga Garmash i in. "Evaluating the performance of five different chemical ionization techniques for detecting gaseous oxygenated organic species". Atmospheric Measurement Techniques 12, nr 4 (17.04.2019): 2403–21. http://dx.doi.org/10.5194/amt-12-2403-2019.
Pełny tekst źródłaFresnais, Margaux, Siwen Liang, Marius Breitkopf, Joshua Raoul Lindner, Emmanuelle Claude, Steven Pringle, Pavel A. Levkin i in. "Analytical Performance Evaluation of New DESI Enhancements for Targeted Drug Quantification in Tissue Sections". Pharmaceuticals 15, nr 6 (1.06.2022): 694. http://dx.doi.org/10.3390/ph15060694.
Pełny tekst źródłaAlfarra, M. R., D. Paulsen, M. Gysel, A. A. Garforth, J. Dommen, A. S. H. Prévôt, D. R. Worsnop, U. Baltensperger i H. Coe. "A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber". Atmospheric Chemistry and Physics 6, nr 12 (20.11.2006): 5279–93. http://dx.doi.org/10.5194/acp-6-5279-2006.
Pełny tekst źródłaAn, Yanqing, Jianzhong Xu, Lin Feng, Xinghua Zhang, Yanmei Liu, Shichang Kang, Bin Jiang i Yuhong Liao. "Molecular characterization of organic aerosol in the Himalayas: insight from ultra-high-resolution mass spectrometry". Atmospheric Chemistry and Physics 19, nr 2 (29.01.2019): 1115–28. http://dx.doi.org/10.5194/acp-19-1115-2019.
Pełny tekst źródłaSchmitt-Kopplin, P., G. Liger-Belair, B. P. Koch, R. Flerus, G. Kattner, M. Harir, B. Kanawati i in. "Dissolved organic matter in sea spray: a transfer study from marine surface water to aerosols". Biogeosciences Discussions 8, nr 6 (8.12.2011): 11767–93. http://dx.doi.org/10.5194/bgd-8-11767-2011.
Pełny tekst źródłaHolzinger, R., J. Williams, F. Herrmann, J. Lelieveld, N. M. Donahue i T. Röckmann. "Aerosol analysis using a Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS): a new approach to study processing of organic aerosols". Atmospheric Chemistry and Physics 10, nr 5 (3.03.2010): 2257–67. http://dx.doi.org/10.5194/acp-10-2257-2010.
Pełny tekst źródłaBarreira, Luís Miguel Feijó, Yu Xue, Geoffroy Duporté, Jevgeni Parshintsev, Kari Hartonen, Matti Jussila, Markku Kulmala i Marja-Liisa Riekkola. "Potential of needle trap microextraction–portable gas chromatography–mass spectrometry for measurement of atmospheric volatile compounds". Atmospheric Measurement Techniques 9, nr 8 (9.08.2016): 3661–71. http://dx.doi.org/10.5194/amt-9-3661-2016.
Pełny tekst źródłaKourtchev, Ivan, Ricardo H. M. Godoi, Sarah Connors, James G. Levine, Alex T. Archibald, Ana F. L. Godoi, Sarah L. Paralovo i in. "Molecular composition of organic aerosols in central Amazonia: an ultra-high-resolution mass spectrometry study". Atmospheric Chemistry and Physics 16, nr 18 (23.09.2016): 11899–913. http://dx.doi.org/10.5194/acp-16-11899-2016.
Pełny tekst źródłaMurschell, Trey, i Delphine K. Farmer. "Real-Time Measurement of Herbicides in the Atmosphere: A Case Study of MCPA and 2,4-D during Field Application". Toxics 7, nr 3 (6.08.2019): 40. http://dx.doi.org/10.3390/toxics7030040.
Pełny tekst źródłaLyu, Ruihe, Zongbo Shi, Mohammed Salim Alam, Xuefang Wu, Di Liu, Tuan V. Vu, Christopher Stark, Pingqing Fu, Yinchang Feng i Roy M. Harrison. "Insight into the composition of organic compounds ( ≥ C<sub>6</sub>) in PM<sub>2.5</sub> in wintertime in Beijing, China". Atmospheric Chemistry and Physics 19, nr 16 (29.08.2019): 10865–81. http://dx.doi.org/10.5194/acp-19-10865-2019.
Pełny tekst źródłaSierau, B., R. Y. W. Chang, C. Leck, J. Paatero i U. Lohmann. "Single-particle characterization of the high-Arctic summertime aerosol". Atmospheric Chemistry and Physics 14, nr 14 (18.07.2014): 7409–30. http://dx.doi.org/10.5194/acp-14-7409-2014.
Pełny tekst źródłaSalami, Ayobami, Jorma Heikkinen, Laura Tomppo, Marko Hyttinen, Timo Kekäläinen, Janne Jänis, Jouko Vepsäläinen i Reijo Lappalainen. "A Comparative Study of Pyrolysis Liquids by Slow Pyrolysis of Industrial Hemp Leaves, Hurds and Roots". Molecules 26, nr 11 (25.05.2021): 3167. http://dx.doi.org/10.3390/molecules26113167.
Pełny tekst źródłaHatch, Lindsay E., Robert J. Yokelson, Chelsea E. Stockwell, Patrick R. Veres, Isobel J. Simpson, Donald R. Blake, John J. Orlando i Kelley C. Barsanti. "Multi-instrument comparison and compilation of non-methane organic gas emissions from biomass burning and implications for smoke-derived secondary organic aerosol precursors". Atmospheric Chemistry and Physics 17, nr 2 (31.01.2017): 1471–89. http://dx.doi.org/10.5194/acp-17-1471-2017.
Pełny tekst źródłaPiel, Felix, Markus Müller, Tomas Mikoviny, Sally E. Pusede i Armin Wisthaler. "Airborne measurements of particulate organic matter by proton-transfer-reaction mass spectrometry (PTR-MS): a pilot study". Atmospheric Measurement Techniques 12, nr 11 (13.11.2019): 5947–58. http://dx.doi.org/10.5194/amt-12-5947-2019.
Pełny tekst źródłaFitzgerald, Robert L., Jeffrey D. Rivera i David A. Herold. "Broad Spectrum Drug Identification Directly from Urine, Using Liquid Chromatography-Tandem Mass Spectrometry". Clinical Chemistry 45, nr 8 (1.08.1999): 1224–34. http://dx.doi.org/10.1093/clinchem/45.8.1224.
Pełny tekst źródłaCheng, Bing-Ming, Eh Piew Chew, Wen-Ching Hung, Jürg Eberhard i Yuan-Pern Lee. "Photoionization studies of sulfur radicals and products of their reactions". Journal of Synchrotron Radiation 5, nr 3 (1.05.1998): 1041–43. http://dx.doi.org/10.1107/s0909049597016075.
Pełny tekst źródłaSengupta, Deep, Vera Samburova, Chiranjivi Bhattarai, Adam C. Watts, Hans Moosmüller i Andrey Y. Khlystov. "Polar semivolatile organic compounds in biomass-burning emissions and their chemical transformations during aging in an oxidation flow reactor". Atmospheric Chemistry and Physics 20, nr 13 (16.07.2020): 8227–50. http://dx.doi.org/10.5194/acp-20-8227-2020.
Pełny tekst źródłaStockwell, C. E., P. R. Veres, J. Williams i R. J. Yokelson. "Characterization of biomass burning emissions from cooking fires, peat, crop residue, and other fuels with high-resolution proton-transfer-reaction time-of-flight mass spectrometry". Atmospheric Chemistry and Physics 15, nr 2 (23.01.2015): 845–65. http://dx.doi.org/10.5194/acp-15-845-2015.
Pełny tekst źródłaUrban, Raphael D., Tillmann G. Fischer, Ales Charvat, Konstantin Wink, Benjamin Krafft, Stefan Ohla, Kirsten Zeitler, Bernd Abel i Detlev Belder. "On-chip mass spectrometric analysis in non-polar solvents by liquid beam infrared matrix-assisted laser dispersion/ionization". Analytical and Bioanalytical Chemistry 413, nr 6 (21.01.2021): 1561–70. http://dx.doi.org/10.1007/s00216-020-03115-4.
Pełny tekst źródłaThoma, Markus, Franziska Bachmeier, Felix Leonard Gottwald, Mario Simon i Alexander Lucas Vogel. "Mass spectrometry-based Aerosolomics: a new approach to resolve sources, composition, and partitioning of secondary organic aerosol". Atmospheric Measurement Techniques 15, nr 23 (12.12.2022): 7137–54. http://dx.doi.org/10.5194/amt-15-7137-2022.
Pełny tekst źródłaMichoud, Vincent, Stéphane Sauvage, Thierry Léonardis, Isabelle Fronval, Alexandre Kukui, Nadine Locoge i Sébastien Dusanter. "Field measurements of methylglyoxal using proton transfer reaction time-of-flight mass spectrometry and comparison to the DNPH–HPLC–UV method". Atmospheric Measurement Techniques 11, nr 10 (18.10.2018): 5729–40. http://dx.doi.org/10.5194/amt-11-5729-2018.
Pełny tekst źródłaKozikowski, Barbara A., Thomas M. Burt, Debra A. Tirey, Lisa E. Williams, Barbara R. Kuzmak, David T. Stanton, Kenneth L. Morand i Sandra L. Nelson. "The Effect of Freeze/Thaw Cycles on the Stability of Compounds in DMSO". Journal of Biomolecular Screening 8, nr 2 (kwiecień 2003): 210–15. http://dx.doi.org/10.1177/1087057103252618.
Pełny tekst źródłaRöhler, Laura, Pernilla Bohlin-Nizzetto, Pawel Rostkowski, Roland Kallenborn i Martin Schlabach. "Non-target and suspect characterisation of organic contaminants in ambient air – Part 1: Combining a novel sample clean-up method with comprehensive two-dimensional gas chromatography". Atmospheric Chemistry and Physics 21, nr 3 (9.02.2021): 1697–716. http://dx.doi.org/10.5194/acp-21-1697-2021.
Pełny tekst źródłaAljawhary, D., A. K. Y. Lee i J. P. D. Abbatt. "High-resolution chemical ionization mass spectrometry (ToF-CIMS): application to study SOA composition and processing". Atmospheric Measurement Techniques 6, nr 11 (26.11.2013): 3211–24. http://dx.doi.org/10.5194/amt-6-3211-2013.
Pełny tekst źródłaKahnt, A., Y. Iinuma, A. Mutzel, O. Böge, M. Claeys i H. Herrmann. "Campholenic aldehyde ozonolysis: a mechanism leading to specific biogenic secondary organic aerosol constituents". Atmospheric Chemistry and Physics 14, nr 2 (22.01.2014): 719–36. http://dx.doi.org/10.5194/acp-14-719-2014.
Pełny tekst źródłaDunne, Erin, Ian E. Galbally, Min Cheng, Paul Selleck, Suzie B. Molloy i Sarah J. Lawson. "Comparison of VOC measurements made by PTR-MS, adsorbent tubes–GC-FID-MS and DNPH derivatization–HPLC during the Sydney Particle Study, 2012: a contribution to the assessment of uncertainty in routine atmospheric VOC measurements". Atmospheric Measurement Techniques 11, nr 1 (10.01.2018): 141–59. http://dx.doi.org/10.5194/amt-11-141-2018.
Pełny tekst źródłaGrace, Daisy N., Melissa B. Sebold i Melissa M. Galloway. "Separation and detection of aqueous atmospheric aerosol mimics using supercritical fluid chromatography–mass spectrometry". Atmospheric Measurement Techniques 12, nr 7 (12.07.2019): 3841–51. http://dx.doi.org/10.5194/amt-12-3841-2019.
Pełny tekst źródłaMüller, M., L. H. Mielke, M. Breitenlechner, S. A. McLuckey, P. B. Shepson, A. Wisthaler i A. Hansel. "MS/MS studies for the selective detection of isomeric biogenic VOCs using a Townsend Discharge Triple Quadrupole Tandem MS and a PTR-Linear Ion Trap MS". Atmospheric Measurement Techniques Discussions 2, nr 4 (4.08.2009): 1837–61. http://dx.doi.org/10.5194/amtd-2-1837-2009.
Pełny tekst źródłaMüller, M., L. H. Mielke, M. Breitenlechner, S. A. McLuckey, P. B. Shepson, A. Wisthaler i A. Hansel. "MS/MS studies for the selective detection of isomeric biogenic VOCs using a Townsend Discharge Triple Quadrupole Tandem MS and a PTR-Linear Ion Trap MS". Atmospheric Measurement Techniques 2, nr 2 (12.11.2009): 703–12. http://dx.doi.org/10.5194/amt-2-703-2009.
Pełny tekst źródłaWang, Kai, Ru-Jin Huang, Martin Brüggemann, Yun Zhang, Lu Yang, Haiyan Ni, Jie Guo i in. "Urban organic aerosol composition in eastern China differs from north to south: molecular insight from a liquid chromatography–mass spectrometry (Orbitrap) study". Atmospheric Chemistry and Physics 21, nr 11 (15.06.2021): 9089–104. http://dx.doi.org/10.5194/acp-21-9089-2021.
Pełny tekst źródłaLaube, J. C., A. Engel, H. Bönisch, T. Möbius, D. R. Worton, W. T. Sturges, K. Grunow i U. Schmidt. "Contribution of very short-lived organic substances to stratospheric chlorine and bromine in the tropics – a case study". Atmospheric Chemistry and Physics 8, nr 23 (11.12.2008): 7325–34. http://dx.doi.org/10.5194/acp-8-7325-2008.
Pełny tekst źródłaÄijälä, Mikko, Kaspar R. Daellenbach, Francesco Canonaco, Liine Heikkinen, Heikki Junninen, Tuukka Petäjä, Markku Kulmala, André S. H. Prévôt i Mikael Ehn. "Constructing a data-driven receptor model for organic and inorganic aerosol – a synthesis analysis of eight mass spectrometric data sets from a boreal forest site". Atmospheric Chemistry and Physics 19, nr 6 (21.03.2019): 3645–72. http://dx.doi.org/10.5194/acp-19-3645-2019.
Pełny tekst źródłaWeloe, Marcel, i Thorsten Hoffmann. "Application of time-of-flight aerosol mass spectrometry for the real-time measurement of particle-phase organic peroxides: an online redox derivatization–aerosol mass spectrometer (ORD-AMS)". Atmospheric Measurement Techniques 13, nr 10 (28.10.2020): 5725–38. http://dx.doi.org/10.5194/amt-13-5725-2020.
Pełny tekst źródłaJamur, J. M. S. "Optimization of Plasma-Assisted Desorption/Ionization-Mass Spectrometry for Analysis of Ibuprofen". Industrial laboratory. Diagnostics of materials 89, nr 7 (25.07.2023): 21–24. http://dx.doi.org/10.26896/1028-6861-2023-89-7-21-24.
Pełny tekst źródłaZhao, Y., A. G. Hallar i L. R. Mazzoleni. "Atmospheric organic matter in clouds: exact masses and molecular formula identification using ultrahigh-resolution FT-ICR mass spectrometry". Atmospheric Chemistry and Physics 13, nr 24 (18.12.2013): 12343–62. http://dx.doi.org/10.5194/acp-13-12343-2013.
Pełny tekst źródłaPawlaczyk, Mateusz, Rafał Frański, Michał Cegłowski i Grzegorz Schroeder. "Mass Spectrometric Investigation of Organo-Functionalized Magnetic Nanoparticles Binding Properties toward Chalcones". Materials 14, nr 16 (20.08.2021): 4705. http://dx.doi.org/10.3390/ma14164705.
Pełny tekst źródłaLi, Junling, Hong Li, Kun Li, Yan Chen, Hao Zhang, Xin Zhang, Zhenhai Wu i in. "Enhanced secondary organic aerosol formation from the photo-oxidation of mixed anthropogenic volatile organic compounds". Atmospheric Chemistry and Physics 21, nr 10 (21.05.2021): 7773–89. http://dx.doi.org/10.5194/acp-21-7773-2021.
Pełny tekst źródłaDeRieux, Wing-Sy Wong, Ying Li, Peng Lin, Julia Laskin, Alexander Laskin, Allan K. Bertram, Sergey A. Nizkorodov i Manabu Shiraiwa. "Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition". Atmospheric Chemistry and Physics 18, nr 9 (4.05.2018): 6331–51. http://dx.doi.org/10.5194/acp-18-6331-2018.
Pełny tekst źródłaGallimore, Peter J., Chiara Giorio, Brendan M. Mahon i Markus Kalberer. "Online molecular characterisation of organic aerosols in an atmospheric chamber using extractive electrospray ionisation mass spectrometry". Atmospheric Chemistry and Physics 17, nr 23 (6.12.2017): 14485–500. http://dx.doi.org/10.5194/acp-17-14485-2017.
Pełny tekst źródłaLi, Zhijian, Sergey A. Nizkorodov, Hong Chen, Xiaohui Lu, Xin Yang i Jianmin Chen. "Nitrogen-containing secondary organic aerosol formation by acrolein reaction with ammonia/ammonium". Atmospheric Chemistry and Physics 19, nr 2 (1.02.2019): 1343–56. http://dx.doi.org/10.5194/acp-19-1343-2019.
Pełny tekst źródłaRodigast, M., A. Mutzel, Y. Iinuma, S. Haferkorn i H. Herrmann. "Characterisation and optimisation of a method for the detection and quantification of atmospherically relevant carbonyl compounds in aqueous medium". Atmospheric Measurement Techniques Discussions 8, nr 1 (23.01.2015): 857–76. http://dx.doi.org/10.5194/amtd-8-857-2015.
Pełny tekst źródła