Gotowa bibliografia na temat „Markov chain Monte Carlo (MCMC)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Markov chain Monte Carlo (MCMC)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Markov chain Monte Carlo (MCMC)"
Borkar, Vivek S. "Markov Chain Monte Carlo (MCMC)". Resonance 27, nr 7 (lipiec 2022): 1107–15. http://dx.doi.org/10.1007/s12045-022-1407-1.
Pełny tekst źródłaRoy, Vivekananda. "Convergence Diagnostics for Markov Chain Monte Carlo". Annual Review of Statistics and Its Application 7, nr 1 (9.03.2020): 387–412. http://dx.doi.org/10.1146/annurev-statistics-031219-041300.
Pełny tekst źródłaJones, Galin L., i Qian Qin. "Markov Chain Monte Carlo in Practice". Annual Review of Statistics and Its Application 9, nr 1 (7.03.2022): 557–78. http://dx.doi.org/10.1146/annurev-statistics-040220-090158.
Pełny tekst źródłaJones, Galin L., i Qian Qin. "Markov Chain Monte Carlo in Practice". Annual Review of Statistics and Its Application 9, nr 1 (7.03.2022): 557–78. http://dx.doi.org/10.1146/annurev-statistics-040220-090158.
Pełny tekst źródłaSiems, Tobias. "Markov Chain Monte Carlo on finite state spaces". Mathematical Gazette 104, nr 560 (18.06.2020): 281–87. http://dx.doi.org/10.1017/mag.2020.51.
Pełny tekst źródłaChaudhary, A. K. "Bayesian Analysis of Two Parameter Complementary Exponential Power Distribution". NCC Journal 3, nr 1 (14.06.2018): 1–23. http://dx.doi.org/10.3126/nccj.v3i1.20244.
Pełny tekst źródłaChaudhary, Arun Kumar, i Vijay Kumar. "A Bayesian Estimation and Predictionof Gompertz Extension Distribution Using the MCMC Method". Nepal Journal of Science and Technology 19, nr 1 (1.07.2020): 142–60. http://dx.doi.org/10.3126/njst.v19i1.29795.
Pełny tekst źródłaChaudhary, A. K. "A Study of Perks-II Distribution via Bayesian Paradigm". Pravaha 24, nr 1 (12.06.2018): 1–17. http://dx.doi.org/10.3126/pravaha.v24i1.20221.
Pełny tekst źródłaMüller, Christian, Fabian Weysser, Thomas Mrziglod i Andreas Schuppert. "Markov-Chain Monte-Carlo methods and non-identifiabilities". Monte Carlo Methods and Applications 24, nr 3 (1.09.2018): 203–14. http://dx.doi.org/10.1515/mcma-2018-0018.
Pełny tekst źródłaShadare, A. E., M. N. O. Sadiku i S. M. Musa. "Markov Chain Monte Carlo Solution of Poisson’s Equation in Axisymmetric Regions". Advanced Electromagnetics 8, nr 5 (17.12.2019): 29–36. http://dx.doi.org/10.7716/aem.v8i5.1255.
Pełny tekst źródłaRozprawy doktorskie na temat "Markov chain Monte Carlo (MCMC)"
Guha, Subharup. "Benchmark estimation for Markov Chain Monte Carlo samplers". The Ohio State University, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=osu1085594208.
Pełny tekst źródłaAngelino, Elaine Lee. "Accelerating Markov chain Monte Carlo via parallel predictive prefetching". Thesis, Harvard University, 2014. http://nrs.harvard.edu/urn-3:HUL.InstRepos:13070022.
Pełny tekst źródłaEngineering and Applied Sciences
Browne, William J. "Applying MCMC methods to multi-level models". Thesis, University of Bath, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268210.
Pełny tekst źródłaDurmus, Alain. "High dimensional Markov chain Monte Carlo methods : theory, methods and applications". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLT001/document.
Pełny tekst źródłaThe subject of this thesis is the analysis of Markov Chain Monte Carlo (MCMC) methods and the development of new methodologies to sample from a high dimensional distribution. Our work is divided into three main topics. The first problem addressed in this manuscript is the convergence of Markov chains in Wasserstein distance. Geometric and sub-geometric convergence with explicit constants, are derived under appropriate conditions. These results are then applied to thestudy of MCMC algorithms. The first analyzed algorithm is an alternative scheme to the Metropolis Adjusted Langevin algorithm for which explicit geometric convergence bounds are established. The second method is the pre-Conditioned Crank-Nicolson algorithm. It is shown that under mild assumption, the Markov chain associated with thisalgorithm is sub-geometrically ergodic in an appropriated Wasserstein distance. The second topic of this thesis is the study of the Unadjusted Langevin algorithm (ULA). We are first interested in explicit convergence bounds in total variation under different kinds of assumption on the potential associated with the target distribution. In particular, we pay attention to the dependence of the algorithm on the dimension of the state space. The case of fixed step sizes as well as the case of nonincreasing sequences of step sizes are dealt with. When the target density is strongly log-concave, explicit bounds in Wasserstein distance are established. These results are then used to derived new bounds in the total variation distance which improve the one previously derived under weaker conditions on the target density.The last part tackles new optimal scaling results for Metropolis-Hastings type algorithms. First, we extend the pioneer result on the optimal scaling of the random walk Metropolis algorithm to target densities which are differentiable in Lp mean for p ≥ 2. Then, we derive new Metropolis-Hastings type algorithms which have a better optimal scaling compared the MALA algorithm. Finally, the stability and the convergence in total variation of these new algorithms are studied
Harkness, Miles Adam. "Parallel simulation, delayed rejection and reversible jump MCMC for object recognition". Thesis, University of Bristol, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324266.
Pełny tekst źródłaSmith, Corey James. "Exact Markov Chain Monte Carlo with Likelihood Approximations for Functional Linear Models". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1531833318013379.
Pełny tekst źródłaWalker, Neil Rawlinson. "A Bayesian approach to the job search model and its application to unemployment durations using MCMC methods". Thesis, University of Newcastle Upon Tyne, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299053.
Pełny tekst źródłaJeon, Juncheol. "Deterioration model for ports in the Republic of Korea using Markov chain Monte Carlo with multiple imputation". Thesis, University of Dundee, 2019. https://discovery.dundee.ac.uk/en/studentTheses/1cc538ea-1468-4d51-bcf8-711f8b9912f9.
Pełny tekst źródłaFu, Jianlin. "A markov chain monte carlo method for inverse stochastic modeling and uncertainty assessment". Doctoral thesis, Universitat Politècnica de València, 2008. http://hdl.handle.net/10251/1969.
Pełny tekst źródłaFu, J. (2008). A markov chain monte carlo method for inverse stochastic modeling and uncertainty assessment [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1969
Palancia
Lindahl, John, i Douglas Persson. "Data-driven test case design of automatic test cases using Markov chains and a Markov chain Monte Carlo method". Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-43498.
Pełny tekst źródłaKsiążki na temat "Markov chain Monte Carlo (MCMC)"
1947-, Gianola Daniel, red. Likelihood, Bayesian and MCMC methods in quantitative genetics. New York: Springer-Verlag, 2002.
Znajdź pełny tekst źródła1961-, Robert Christian P., red. Discretization and MCMC convergence assessment. New York: Springer, 1998.
Znajdź pełny tekst źródłaHandbook for Markov chain Monte Carlo. Boca Raton: Taylor & Francis, 2011.
Znajdź pełny tekst źródłaLiang, Faming, Chuanhai Liu i Raymond J. Carroll. Advanced Markov Chain Monte Carlo Methods. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470669723.
Pełny tekst źródłaR, Gilks W., Richardson S i Spiegelhalter D. J, red. Markov chain Monte Carlo in practice. Boca Raton, Fla: Chapman & Hall, 1998.
Znajdź pełny tekst źródłaR, Gilks W., Richardson S i Spiegelhalter D. J, red. Markov chain Monte Carlo in practice. London: Chapman & Hall, 1996.
Znajdź pełny tekst źródłaCowles, Mary Kathryn. Possible biases induced by MCMC convergence diagnostics. Toronto: University of Toronto, Dept. of Statistics, 1997.
Znajdź pełny tekst źródłaS, Kendall W., Liang F. 1970- i Wang J. S. 1960-, red. Markov chain Monte Carlo: Innovations and applications. Singapore: World Scientific, 2005.
Znajdź pełny tekst źródłaJoseph, Anosh. Markov Chain Monte Carlo Methods in Quantum Field Theories. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46044-0.
Pełny tekst źródłaGamerman, Dani. Markov chain Monte Carlo: Stochastic simulation for Bayesian inference. London: Chapman & Hall, 1997.
Znajdź pełny tekst źródłaCzęści książek na temat "Markov chain Monte Carlo (MCMC)"
Robert, Christian P., i Sylvia Richardson. "Markov Chain Monte Carlo Methods". W Discretization and MCMC Convergence Assessment, 1–25. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1716-9_1.
Pełny tekst źródłaHanada, Masanori, i So Matsuura. "Applications of Markov Chain Monte Carlo". W MCMC from Scratch, 113–68. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2715-7_6.
Pełny tekst źródłaHanada, Masanori, i So Matsuura. "General Aspects of Markov Chain Monte Carlo". W MCMC from Scratch, 27–38. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2715-7_3.
Pełny tekst źródłaZhang, Yan. "Markov Chain Monte Carlo (MCMC) Simulations". W Encyclopedia of Systems Biology, 1176. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_403.
Pełny tekst źródłaBhattacharya, Rabi, Lizhen Lin i Victor Patrangenaru. "Markov Chain Monte Carlo (MCMC) Simulation and Bayes Theory". W Springer Texts in Statistics, 325–32. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-4032-5_14.
Pełny tekst źródłaWalgama Wellalage, N. K., Tieling Zhang, Richard Dwight i Khaled El-Akruti. "Bridge Deterioration Modeling by Markov Chain Monte Carlo (MCMC) Simulation Method". W Lecture Notes in Mechanical Engineering, 545–56. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09507-3_47.
Pełny tekst źródłaLundén, Daniel, Gizem Çaylak, Fredrik Ronquist i David Broman. "Automatic Alignment in Higher-Order Probabilistic Programming Languages". W Programming Languages and Systems, 535–63. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30044-8_20.
Pełny tekst źródłaWüthrich, Mario V., i Michael Merz. "Bayesian Methods, Regularization and Expectation-Maximization". W Springer Actuarial, 207–66. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12409-9_6.
Pełny tekst źródłaLundén, Daniel, Johannes Borgström i David Broman. "Correctness of Sequential Monte Carlo Inference for Probabilistic Programming Languages". W Programming Languages and Systems, 404–31. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72019-3_15.
Pełny tekst źródłaAmiri, Esmail. "Bayesian Automatic Parameter Estimation of Threshold Autoregressive (TAR) Models using Markov Chain Monte Carlo (MCMC)". W Compstat, 189–94. Heidelberg: Physica-Verlag HD, 2002. http://dx.doi.org/10.1007/978-3-642-57489-4_24.
Pełny tekst źródłaStreszczenia konferencji na temat "Markov chain Monte Carlo (MCMC)"
Vaiciulyte, Ingrida. "Adaptive Monte-Carlo Markov chain for multivariate statistical estimation". W International Workshop of "Stochastic Programming for Implementation and Advanced Applications". The Association of Lithuanian Serials, 2012. http://dx.doi.org/10.5200/stoprog.2012.21.
Pełny tekst źródłaZhang, Zhen, Xupeng He, Yiteng Li, Marwa AlSinan, Hyung Kwak i Hussein Hoteit. "Parameter Inversion in Geothermal Reservoir Using Markov Chain Monte Carlo and Deep Learning". W SPE Reservoir Simulation Conference. SPE, 2023. http://dx.doi.org/10.2118/212185-ms.
Pełny tekst źródłaAuvinen, Harri, Tuomo Raitio, Samuli Siltanen i Paavo Alku. "Utilizing Markov chain Monte Carlo (MCMC) method for improved glottal inverse filtering". W Interspeech 2012. ISCA: ISCA, 2012. http://dx.doi.org/10.21437/interspeech.2012-450.
Pełny tekst źródłaEmery, A. F., i E. Valenti. "Estimating Parameters of a Packed Bed by Least Squares and Markov Chain Monte Carlo". W ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82086.
Pełny tekst źródłaGuzman, Rel. "Monte Carlo Methods on High Dimensional Data". W LatinX in AI at Neural Information Processing Systems Conference 2018. Journal of LatinX in AI Research, 2018. http://dx.doi.org/10.52591/lxai2018120314.
Pełny tekst źródłaur Rehman, M. Javvad, Sarat Chandra Dass i Vijanth Sagayan Asirvadam. "Markov chain Monte Carlo (MCMC) method for parameter estimation of nonlinear dynamical systems". W 2015 IEEE International Conference on Signal and Image Processing Applications (ICSIPA). IEEE, 2015. http://dx.doi.org/10.1109/icsipa.2015.7412154.
Pełny tekst źródłaHassan, Badreldin G. H., Isameldin A. Atiem i Ping Feng. "Rainfall Frequency Analysis of Sudan by Using Bayesian Markov chain Monte Carlo (MCMC) methods". W 2013 International Conference on Information Science and Technology Applications. Paris, France: Atlantis Press, 2013. http://dx.doi.org/10.2991/icista.2013.21.
Pełny tekst źródłaNiaki, Farbod Akhavan, Durul Ulutan i Laine Mears. "Parameter Estimation Using Markov Chain Monte Carlo Method in Mechanistic Modeling of Tool Wear During Milling". W ASME 2015 International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/msec2015-9357.
Pełny tekst źródłaAgdas, Duzgun, Michael T. Davidson i Ralph D. Ellis. "Efficiency Comparison of Markov Chain Monte Carlo Simulation with Subset Simulation (MCMC/ss) to Standard Monte Carlo Simulation (sMC) for Extreme Event Scenarios". W First International Symposium on Uncertainty Modeling and Analysis and Management (ICVRAM 2011); and Fifth International Symposium on Uncertainty Modeling and Anaylsis (ISUMA). Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41170(400)11.
Pełny tekst źródłaAnggarwati, Febiana Putri, Azizah i Trianingsih Eni Lestari. "Risk analysis of investment in stock market using mixture of mixture model and Bayesian Markov Chain Monte Carlo (MCMC)". W PROCEEDINGS OF THE II INTERNATIONAL SCIENTIFIC CONFERENCE ON ADVANCES IN SCIENCE, ENGINEERING AND DIGITAL EDUCATION: (ASEDU-II 2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0110465.
Pełny tekst źródłaRaporty organizacyjne na temat "Markov chain Monte Carlo (MCMC)"
Gelfand, Alan E., i Sujit K. Sahu. On Markov Chain Monte Carlo Acceleration. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 1994. http://dx.doi.org/10.21236/ada279393.
Pełny tekst źródłaSafta, Cosmin, Mohammad Khalil i Habib N. Najm. Transitional Markov Chain Monte Carlo Sampler in UQTk. Office of Scientific and Technical Information (OSTI), marzec 2020. http://dx.doi.org/10.2172/1606084.
Pełny tekst źródłaWarnes, Gregory R. HYDRA: A Java Library for Markov Chain Monte Carlo. Fort Belvoir, VA: Defense Technical Information Center, marzec 2002. http://dx.doi.org/10.21236/ada459649.
Pełny tekst źródłaBates, Cameron Russell, i Edward Allen Mckigney. Metis: A Pure Metropolis Markov Chain Monte Carlo Bayesian Inference Library. Office of Scientific and Technical Information (OSTI), styczeń 2018. http://dx.doi.org/10.2172/1417145.
Pełny tekst źródłaBaltz, E. Markov Chain Monte Carlo Exploration of Minimal Supergravity with Implications for Dark Matter. Office of Scientific and Technical Information (OSTI), lipiec 2004. http://dx.doi.org/10.2172/827306.
Pełny tekst źródłaSethuraman, Jayaram. Easily Verifiable Conditions for the Convergence of the Markov Chain Monte Carlo Method. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1995. http://dx.doi.org/10.21236/ada308874.
Pełny tekst źródłaDoss, Hani. Studies in Reliability Theory and Survival Analysis and in Markov Chain Monte Carlo Methods. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1998. http://dx.doi.org/10.21236/ada367895.
Pełny tekst źródłaDoss, Hani. Statistical Inference for Coherent Systems from Partial Information and Markov Chain Monte Carlo Methods. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1996. http://dx.doi.org/10.21236/ada305676.
Pełny tekst źródłaDoss, Hani. Studies in Reliability Theory and Survival Analysis and in Markov Chain Monte Carlo Methods. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1998. http://dx.doi.org/10.21236/ada379998.
Pełny tekst źródłaKnopp, Jeremy S., i Fumio Kojima. Inverse Problem for Electromagnetic Propagation in a Dielectric Medium using Markov Chain Monte Carlo Method (Preprint). Fort Belvoir, VA: Defense Technical Information Center, sierpień 2012. http://dx.doi.org/10.21236/ada565876.
Pełny tekst źródła