Gotowa bibliografia na temat „Many-body methods”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Many-body methods”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Many-body methods"
Schäfer, T., C. W. Kao i S. R. Cotanch. "Many body methods and effective field theory". Nuclear Physics A 762, nr 1-2 (listopad 2005): 82–101. http://dx.doi.org/10.1016/j.nuclphysa.2005.08.006.
Pełny tekst źródłaStewart, I. "Symmetry methods in collisionless many-body problems". Journal of Nonlinear Science 6, nr 6 (listopad 1996): 543–63. http://dx.doi.org/10.1007/bf02434056.
Pełny tekst źródłaCARDY, JOHN. "EXACT RESULTS FOR MANY-BODY PROBLEMS USING FEW-BODY METHODS". International Journal of Modern Physics B 20, nr 19 (30.07.2006): 2595–602. http://dx.doi.org/10.1142/s0217979206035072.
Pełny tekst źródłaKaldor, Uzi. "Multireference many-body methods. Perspective on "Linked-cluster expansions for the nuclear many-body problem"". Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta) 103, nr 3-4 (9.02.2000): 276–77. http://dx.doi.org/10.1007/s002149900014.
Pełny tekst źródłaViviani, M. "Few- and many-body methods in nuclear physics". European Physical Journal A 31, nr 4 (marzec 2007): 429–34. http://dx.doi.org/10.1140/epja/i2006-10263-9.
Pełny tekst źródłaDrut, Joaquín E., i Amy N. Nicholson. "Lattice methods for strongly interacting many-body systems". Journal of Physics G: Nuclear and Particle Physics 40, nr 4 (12.03.2013): 043101. http://dx.doi.org/10.1088/0954-3899/40/4/043101.
Pełny tekst źródłaPulay, P., i S. Sæbø. "Variational CEPA: Comparison with different many-body methods". Chemical Physics Letters 117, nr 1 (maj 1985): 37–41. http://dx.doi.org/10.1016/0009-2614(85)80400-0.
Pełny tekst źródłaNieves, J. "Quantum field theoretical methods in many body systems". Czechoslovak Journal of Physics 46, nr 7-8 (lipiec 1996): 673–720. http://dx.doi.org/10.1007/bf01692562.
Pełny tekst źródłaLewin, Mathieu. "Geometric methods for nonlinear many-body quantum systems". Journal of Functional Analysis 260, nr 12 (czerwiec 2011): 3535–95. http://dx.doi.org/10.1016/j.jfa.2010.11.017.
Pełny tekst źródłaGutfreund, H. "Applications of many body methods to large molecules". Journal of Polymer Science Part C: Polymer Symposia 29, nr 1 (7.03.2007): 95–108. http://dx.doi.org/10.1002/polc.5070290113.
Pełny tekst źródłaRozprawy doktorskie na temat "Many-body methods"
Wilson, Mark. "Many-body effects in ionic systems". Thesis, University of Oxford, 1994. http://ora.ox.ac.uk/objects/uuid:3c66daa2-5318-40d2-a445-15296d598a57.
Pełny tekst źródłaSteiger, Don. "Numerical n-body methods in computational chemistry /". free to MU campus, to others for purchase, 1998. http://wwwlib.umi.com/cr/mo/fullcit?p9924930.
Pełny tekst źródłaDinh, Thi Hanh Physics Faculty of Science UNSW. "Application of many-body theory methods to atomic problems". Publisher:University of New South Wales. Physics, 2009. http://handle.unsw.edu.au/1959.4/43734.
Pełny tekst źródłaGerster, Matthias [Verfasser]. "Tensor network methods for quantum many-body simulations / Matthias Gerster". Ulm : Universität Ulm, 2021. http://d-nb.info/1233737406/34.
Pełny tekst źródłaRichard, Ryan. "Increasing the computational efficiency of ab initio methods with generalized many-body expansions". The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1385570237.
Pełny tekst źródłaMolnar, Andras [Verfasser], i Jan von [Akademischer Betreuer] Delft. "Tensor Network methods in many-body physics / Andras Molnar ; Betreuer: Jan von Delft". München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2019. http://d-nb.info/1185979328/34.
Pełny tekst źródłaBlandon, Juan. "DEVELOPMENT OF THEORETICAL AND COMPUTATIONAL METHODS FOR FEW-BODY PROCESSES IN ULTRACOLD QUANTUM GASES". Master's thesis, University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2881.
Pełny tekst źródłaM.S.
Department of Physics
Sciences
Physics
Motta, M. "DYNAMICAL PROPERTIES OF MANY--BODY SYSTEMS FROM CONFIGURATIONAL AND DETERMINANTAL QUANTUM MONTE CARLO METHODS". Doctoral thesis, Università degli Studi di Milano, 2015. http://hdl.handle.net/2434/345455.
Pełny tekst źródłaHoltz, Susan Lady. "Liouville resolvent methods applied to highly correlated systems". Diss., Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/49795.
Pełny tekst źródłaScalesi, Alberto. "On the characterization of nuclear many-body correlations in the ab initio approach". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP070.
Pełny tekst źródłaThe 'ab initio' branch of nuclear structure theory has traditionally focused on the study of light to mid-mass nuclei and primarily spherical systems. Current developments aim at extending this focus to heavy-mass nuclei and doubly open-shell systems. The study of such systems is qualitatively and quantitatively challenging. Hence, different strategies must be designed to efficiently capture the dominant correlations that most significantly impact the observables of interest. While in principle exact methods exist to solve the non-relativistic Schrödinger equation for a given Nuclear Hamiltonian, practical limitations in numerical simulations make such an approach impossible for most isotopes. This calls for a hierarchical characterization of the main correlations at play in the various nuclear systems. Most ab initio techniques rely on an initial mean-field calculation, typically carried out via the Hartree-Fock (HF) method, which provide a reference state containing the principal part of the correlations contributing to bulk nuclear properties. When tackling open-shell systems, it has been proven particularly convenient to break symmetries at mean-field level to effectively include the static correlations arising in superfluid (via HF-Bogoliubov theory, HFB) or deformed nuclei (via deformed HF, dHF). The present work contributes to this research line by proposing end exploring novel symmetry-breaking many-body techniques applicable to all nuclear systems. The simplest ab initio technique that can be applied on top of the mean-field is many-body perturbation theory. The first result of this work is the demonstration that symmetry-breaking perturbation theory (dBMBPT) based on state-of-the-art nuclear interactions can already qualitatively describe the main nuclear observables, such as ground-state energies and radii. Given that perturbation theory constitutes a cheap and efficient way to perform systematic studies of different nuclei across the nuclear chart, a part of the present work is dedicated to pave the way to such large-scale calculations. In order to push many-body calculations to higher precision, a novel ab initio technique is then introduced, namely the deformed Dyson Self-Consistent Green's function (dDSCGF) method. Such a non-perturbative (i.e., resumming an infinite number of perturbation-theory contributions) approach allows one to compute a wide variety of quantities of interest, both for the ground state of the targeted nucleus and for excited states of neighbouring systems. In addition, it naturally bridges to nuclear reactions giving access to, e.g., the evaluation of optical potentials. Given the high computational cost of non-perturbative many-body methods, the final section introduces possible approaches to make such calculations more efficient. In particular, the Natural Orbital basis is introduced and investigated in the context of deformed systems. Eventually, it is proven that this technique enables the use of much smaller basis sets, thus significantly decreasing the final cost of numerical simulations and enlarging their reach. All together, the developments reported in the present work open up new and promising possibilities for the ab initio description of heavy-mass and open-shell nuclei
Książki na temat "Many-body methods"
Kaldor, U., red. Many-Body Methods in Quantum Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-93424-7.
Pełny tekst źródłaPaul, Gibbon, red. Many-body tree methods in physics. Cambridge: Cambridge University Press, 1996.
Znajdź pełny tekst źródłaHubac, Ivan, i Stephen Wilson. Brillouin-Wigner Methods for Many-Body Systems. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3373-4.
Pełny tekst źródła1950-, Wilson S. (Stephen), red. Brillouin-Wigner methods for many-body systems. Dordrecht: Springer, 2010.
Znajdź pełny tekst źródłaSchirmer, Jochen. Many-Body Methods for Atoms, Molecules and Clusters. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93602-4.
Pełny tekst źródłaD, Brewer William, i SpringerLink (Online service), red. Fundamentals of Many-body Physics: Principles and Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
Znajdź pełny tekst źródłaNATO Advanced Study Institute on Dynamics : Models and Kinetic Methods for Non-equilibrium Many Body Systems (1998 Lorentz Institute, Leiden University). Dynamics: Models and kinetic methods for non-equilibrium many body systems. Dordrecht: Kluwer Academic Publishers, 2000.
Znajdź pełny tekst źródłaMukherjee, Debashis, red. Applied Many-Body Methods in Spectroscopy and Electronic Structure. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4757-9256-0.
Pełny tekst źródłaKarkheck, John. Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems. Dordrecht: Springer Netherlands, 2002.
Znajdź pełny tekst źródłaKarkheck, John, red. Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-011-4365-3.
Pełny tekst źródłaCzęści książek na temat "Many-body methods"
Ceperley, D. M., i M. H. Kalos. "Quantum Many-Body Problems". W Monte Carlo Methods in Statistical Physics, 145–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82803-4_4.
Pełny tekst źródłaQuiney, Harry M. "Relativistic Many-Body Perturbation Theory". W Methods in Computational Chemistry, 227–78. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0711-2_5.
Pełny tekst źródłaTrugman, S. A. "General Many-Body Systems". W Applications of Statistical and Field Theory Methods to Condensed Matter, 253–63. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5763-6_22.
Pełny tekst źródłaMartin, Philippe A., i François Rothen. "Perturbative Methods in Many-Body Problems". W Many-Body Problems and Quantum Field Theory, 393–422. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08490-8_10.
Pełny tekst źródłaMartin, Philippe A., i François Rothen. "Perturbative Methods in Many-Body Problems". W Many-Body Problems and Quantum Field Theory, 401–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04894-8_10.
Pełny tekst źródłaMontangero, Simone. "Many-Body Quantum Systems at Equilibrium". W Introduction to Tensor Network Methods, 97–108. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01409-4_7.
Pełny tekst źródłaBirman, Joseph L., i Allan I. Solomon. "Dynamic Symmetry in Many-Body Problem". W Group Theoretical Methods in Physics. Volume II, 61–69. London: CRC Press, 2024. http://dx.doi.org/10.1201/9781003580850-4.
Pełny tekst źródłaMartin, Philippe A., i François Rothen. "Perturbative Methods in Field Theory". W Many-Body Problems and Quantum Field Theory, 325–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08490-8_9.
Pełny tekst źródłaMartin, Philippe A., i François Rothen. "Perturbative Methods in Field Theory". W Many-Body Problems and Quantum Field Theory, 333–400. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04894-8_9.
Pełny tekst źródłaHubač, Ivan, i Stephen Wilson. "Brillouin-Wigner Methods for Many-Body Systems". W Brillouin-Wigner Methods for Many-Body Systems, 133–89. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3373-4_4.
Pełny tekst źródłaStreszczenia konferencji na temat "Many-body methods"
Markussen, Troels, Petr A. Khomyakov, Brecht Verstichel, Anders Blom i Rasmus Faber. "Band Alignment in GAA Nanosheet Structures from Density Dependent Hybrid Functional and Many-Body GW Methods". W 2024 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 01–04. IEEE, 2024. http://dx.doi.org/10.1109/sispad62626.2024.10732914.
Pełny tekst źródłaCARDY, JOHN. "EXACT RESULTS FOR MANY-BODY PROBLEMS USING FEW-BODY METHODS". W Proceedings of the 12th International Conference. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772893_0005.
Pełny tekst źródłaHoriuchi, H., M. Kamimura, H. Toki, Y. Fujiwara, M. Matsuo i Y. Sakuragi. "Innovative Computational Methods in Nuclear Many-Body Problems". W XVII RCNP International Symposium. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789814528405.
Pełny tekst źródłaSEDRAKIAN, ARMEN, i JOHN W. CLARK. "MANY-BODY METHODS FOR NUCLEAR SYSTEMS AT SUBNUCLEAR DENSITIES". W Proceedings of the 14th International Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812779885_0017.
Pełny tekst źródłaDas, M. P. "DENSITY FUNCTIONAL THEORY: MANY-BODY EFFECTS WITHOUT TEARS". W Proceedings of the Miniworkshop on “Methods of Electronic Structure Calculations” and Working Group on “Disordered Alloys”. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789814503778_0001.
Pełny tekst źródłaSchachenmayer, Johannes. "Exploring Quantum Many-Body Spin Dynamics with Truncated Wigner Methods". W Latin America Optics and Photonics Conference. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/laop.2016.ltu5b.4.
Pełny tekst źródła"Preface: Symmetries and Order: Algebraic Methods in Many-Body Systems". W Symmetries and Order: Algebraic Methods in Many Body Systems: A symposium in celebration of the career of Professor Francesco Iachello. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5124570.
Pełny tekst źródła"Dedication: Symmetries and Order: Algebraic Methods in Many-Body Systems". W Symmetries and Order: Algebraic Methods in Many Body Systems: A symposium in celebration of the career of Professor Francesco Iachello. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5124571.
Pełny tekst źródłaCejnar, Pavel, Pavel Stránský, Michal Kloc i Michal Macek. "Static vs. dynamic phases of quantum many-body systems". W Symmetries and Order: Algebraic Methods in Many Body Systems: A symposium in celebration of the career of Professor Francesco Iachello. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5124589.
Pełny tekst źródłaDraayer, J. P., K. D. Sviratcheva, C. Bahri i A. I. Georgieva. "On the Physical Significance of q-deformation in Many-body Physics". W Proceedings of the 23rd International Conference of Differential Geometric Methods in Theoretical Physics. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772527_0012.
Pełny tekst źródłaRaporty organizacyjne na temat "Many-body methods"
Bartlett, Rodney J. Molecular Interactions and Properties with Many-Body Methods. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 1990. http://dx.doi.org/10.21236/ada222631.
Pełny tekst źródłaBartlett, Rodney J. Development of Many-Body Methods for Flame Chemistry and Large Molecule Applications. Fort Belvoir, VA: Defense Technical Information Center, maj 1987. http://dx.doi.org/10.21236/ada184451.
Pełny tekst źródłaMillis, Andrew. Many Body Methods from Chemistry to Physics: Novel Computational Techniques for Materials-Specific Modelling: A Computational Materials Science and Chemistry Network. Office of Scientific and Technical Information (OSTI), listopad 2016. http://dx.doi.org/10.2172/1332662.
Pełny tekst źródłaUnderwood, H., Madison Hand, Donald Leopold, Madison Hand, Donald Leopold i H. Underwood. Abundance and distribution of white-tailed deer on First State National Historical Park and surrounding lands. National Park Service, 2024. http://dx.doi.org/10.36967/2305428.
Pełny tekst źródłaRuprah, Inder J., i Luis Marcano. Does Technical Assistance Matter?: An Impact Evaluation Approach to Estimate its Value Added. Inter-American Development Bank, styczeń 2009. http://dx.doi.org/10.18235/0011138.
Pełny tekst źródłaSappington, Jayne, Esther De León, Sara Schumacher, Kimberly Vardeman, Donell Callender, Marina Oliver, Hillary Veeder i Laura Heinz. Library Impact Research Report: Educating and Empowering a Diverse Student Body: Supporting Diversity, Equity, and Inclusion Research through Library Collections. Association of Research Libraries, lipiec 2022. http://dx.doi.org/10.29242/report.texastech2022.
Pełny tekst źródłaHalker Singh, Rashmi B., Juliana H. VanderPluym, Allison S. Morrow, Meritxell Urtecho, Tarek Nayfeh, Victor D. Torres Roldan, Magdoleen H. Farah i in. Acute Treatments for Episodic Migraine. Agency for Healthcare Research and Quality (AHRQ), grudzień 2020. http://dx.doi.org/10.23970/ahrqepccer239.
Pełny tekst źródłaSharp, Sarah M., Michael J. Moore, Craig A. Harms, Sarah M. Wilkin, W. Brian Sharp, Kristen M. Patchett i Kathryn S. Rose. Report of the live large whale stranding response workshop. Woods Hole Oceanographic Institution, listopad 2024. http://dx.doi.org/10.1575/1912/70889.
Pełny tekst źródłaBeason, Scott, Taylor Kenyon, Robert Jost i Laurent Walker. Changes in glacier extents and estimated changes in glacial volume at Mount Rainier National Park, Washington, USA from 1896 to 2021. National Park Service, czerwiec 2023. http://dx.doi.org/10.36967/2299328.
Pełny tekst źródłaKeshav, Dr Geetha, Dr Suwaibah Fatima Samer, Dr Salman Haroon i Dr Mohammed Abrar Hassan. TO STUDY THE CORRELATION OF BMI WITH ABO BLOOD GROUP AND CARDIOVASCULAR RISK AMONG MEDICAL STUDENTS. World Wide Journals, luty 2023. http://dx.doi.org/10.36106/ijar/2405523.
Pełny tekst źródła