Artykuły w czasopismach na temat „Many-Body formalisms”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Many-Body formalisms”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Faber, C., P. Boulanger, C. Attaccalite, I. Duchemin i X. Blase. "Excited states properties of organic molecules: from density functional theory to the GW and Bethe–Salpeter Green's function formalisms". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, nr 2011 (13.03.2014): 20130271. http://dx.doi.org/10.1098/rsta.2013.0271.
Pełny tekst źródłaAL-SUGHEIR, M. K., H. B. GHASSIB i B. R. JOUDEH. "FERMI PAIRING IN DILUTE 3He-HeII MIXTURES". International Journal of Modern Physics B 20, nr 18 (20.07.2006): 2491–504. http://dx.doi.org/10.1142/s0217979206034844.
Pełny tekst źródłaEvangelista, Francesco A. "Automatic derivation of many-body theories based on general Fermi vacua". Journal of Chemical Physics 157, nr 6 (14.08.2022): 064111. http://dx.doi.org/10.1063/5.0097858.
Pełny tekst źródłaHU, BEN YU-KUANG. "MANY-BODY EFFECTS IN FRICTIONAL DRAG BETWEEN COUPLED TWO-DIMENSIONAL ELECTRON SYSTEMS". International Journal of Modern Physics B 13, nr 05n06 (10.03.1999): 469–78. http://dx.doi.org/10.1142/s0217979299000369.
Pełny tekst źródłaLindgren, I., S. Salomonson i D. Hedendahl. "Many-body-QED perturbation theory: Connection to the two-electron BetheSalpeter equation". Canadian Journal of Physics 83, nr 3 (1.03.2005): 183–218. http://dx.doi.org/10.1139/p05-027.
Pełny tekst źródłaChaudhuri, Rajat, Dhiman Sinha i Debashis Mukherjee. "On the extensivity of the roots of effective Hamiltonians in many-body formalisms employing incomplete model spaces". Chemical Physics Letters 163, nr 2-3 (listopad 1989): 165–70. http://dx.doi.org/10.1016/0009-2614(89)80029-6.
Pełny tekst źródłaBauman, Nicholas P., Eric J. Bylaska, Sriram Krishnamoorthy, Guang Hao Low, Nathan Wiebe, Christopher E. Granade, Martin Roetteler, Matthias Troyer i Karol Kowalski. "Downfolding of many-body Hamiltonians using active-space models: Extension of the sub-system embedding sub-algebras approach to unitary coupled cluster formalisms". Journal of Chemical Physics 151, nr 1 (7.07.2019): 014107. http://dx.doi.org/10.1063/1.5094643.
Pełny tekst źródłaAlastuey, A. "Statistical Mechanics of Quantum Plasmas Path Integral Formalism". International Astronomical Union Colloquium 147 (1994): 43–77. http://dx.doi.org/10.1017/s0252921100026312.
Pełny tekst źródłaVillani, Matteo, i Xavier Oriols. "Can Wigner distribution functions with collisions satisfy complete positivity and energy conservation?" Journal of Computational Electronics 20, nr 6 (23.11.2021): 2232–44. http://dx.doi.org/10.1007/s10825-021-01798-1.
Pełny tekst źródłaBaer, Roi, i Daniel Neuhauser. "Many-body scattering formalism of quantum molecular conductance". Chemical Physics Letters 374, nr 5-6 (czerwiec 2003): 459–63. http://dx.doi.org/10.1016/s0009-2614(03)00709-7.
Pełny tekst źródłaLungu, Radu Paul, i Andrei Manolescu. "Many-Body Fermion Systems in the Floquet Formalism". Physica Scripta 62, nr 6 (1.12.2000): 433–45. http://dx.doi.org/10.1238/physica.regular.062a00433.
Pełny tekst źródłaDardi, Peter S., i R. I. Cukier. "Vibrational relaxation in fluids: A many body scattering formalism". Journal of Chemical Physics 86, nr 4 (15.02.1987): 2264–75. http://dx.doi.org/10.1063/1.452125.
Pełny tekst źródłaShiau, Shiue-Yuan, Ching-Hang Chien, Yia-Chung Chang i Monique Combescot. "Coboson many-body formalism for atom–dimer scattering length". Annals of Physics 400 (styczeń 2019): 366–82. http://dx.doi.org/10.1016/j.aop.2018.11.026.
Pełny tekst źródłaNest, Maarten Van den. "A monomial matrix formalism to describe quantum many-body states". New Journal of Physics 13, nr 12 (1.12.2011): 123004. http://dx.doi.org/10.1088/1367-2630/13/12/123004.
Pełny tekst źródłaGomes, Rosana O., Cesar A. Z. Vasconcellos, Bruno Franzon, Stefan Schramm i Veronica Dexheimer. "Highly Magnetized Neutron Stars in a Many-body Forces Formalism". International Journal of Modern Physics: Conference Series 45 (styczeń 2017): 1760033. http://dx.doi.org/10.1142/s2010194517600333.
Pełny tekst źródłaSaito, Susumu, S. B. Zhang, Steven G. Louie i Marvin L. Cohen. "New formalism for determining excitation spectra of many-body systems". Physical Review B 42, nr 12 (15.10.1990): 7391–97. http://dx.doi.org/10.1103/physrevb.42.7391.
Pełny tekst źródłaBENHAR, OMAR. "MANY-BODY THEORY OF THE ELECTROWEAK NUCLEAR RESPONSE". International Journal of Modern Physics E 18, nr 05n06 (czerwiec 2009): 1282–301. http://dx.doi.org/10.1142/s0218301309013506.
Pełny tekst źródłaChakrabarti, Barnali. "Use of supersymmetric isospectral formalism to realistic quantum many-body problems". Pramana 73, nr 2 (sierpień 2009): 405–16. http://dx.doi.org/10.1007/s12043-009-0132-6.
Pełny tekst źródłaSchuck, Peter. "Many-body Dyson equation approach to the seniority model of pairing". International Journal of Modern Physics E 29, nr 04 (kwiecień 2020): 2050023. http://dx.doi.org/10.1142/s0218301320500238.
Pełny tekst źródłaLarder, B., D. O. Gericke, S. Richardson, P. Mabey, T. G. White i G. Gregori. "Fast nonadiabatic dynamics of many-body quantum systems". Science Advances 5, nr 11 (listopad 2019): eaaw1634. http://dx.doi.org/10.1126/sciadv.aaw1634.
Pełny tekst źródłaWang, Huai-Yu. "Many-body theories for negative kinetic energy systems". Physics Essays 36, nr 2 (12.06.2023): 198–211. http://dx.doi.org/10.4006/0836-1398-36.2.198.
Pełny tekst źródłaHonet, Antoine, Luc Henrard i Vincent Meunier. "Semi-empirical many-body formalism of optical absorption in nanosystems and molecules". Carbon Trends 4 (lipiec 2021): 100073. http://dx.doi.org/10.1016/j.cartre.2021.100073.
Pełny tekst źródłaDardi, Peter S., i R. I. Cukier. "Vibrational relaxation in fluids: Calculations based on a many‐body scattering formalism". Journal of Chemical Physics 86, nr 12 (15.06.1987): 6893–907. http://dx.doi.org/10.1063/1.452389.
Pełny tekst źródłaNakano, Masahiro, i Akira Hasegawa. "Relativistic many-body theory of finite nuclei and the Schwinger-Dyson formalism". Physical Review C 43, nr 2 (1.02.1991): 618–33. http://dx.doi.org/10.1103/physrevc.43.618.
Pełny tekst źródłaSellier, J. M., i I. Dimov. "On the simulation of indistinguishable fermions in the many-body Wigner formalism". Journal of Computational Physics 280 (styczeń 2015): 287–94. http://dx.doi.org/10.1016/j.jcp.2014.09.026.
Pełny tekst źródłaHikami, Kazuhiro. "Dunkl Operator Formalism for Quantum Many-Body Problems Associated with Classical Root Systems". Journal of the Physical Society of Japan 65, nr 2 (15.02.1996): 394–401. http://dx.doi.org/10.1143/jpsj.65.394.
Pełny tekst źródłaMoldoveanu, Manolescu i Gudmundsson. "Generalized Master Equation Approach to Time-Dependent Many-Body Transport". Entropy 21, nr 8 (25.07.2019): 731. http://dx.doi.org/10.3390/e21080731.
Pełny tekst źródłaTernovsky, V. B. "OPTIMIZED RELATIVISTIC MANY-BODY PERTURBATION THEORY IN CALCULATIONS OF ATOMIC SPECTRAL AND RADIATION CHARACTERISTICS: Eu ATOM". Photoelectronics, nr 30 (21.08.2022): 97–104. http://dx.doi.org/10.18524/0235-2435.2021.30.262864.
Pełny tekst źródłaRATH, ASWINI KUMAR, P. M. WALKER i C. R. PRAHARAJ. "SPECTROSCOPY OF HIGH-K BANDS IN THE A=180 REGION USING A QUANTUM MANY-BODY METHOD". International Journal of Modern Physics B 17, nr 28 (10.11.2003): 5215–19. http://dx.doi.org/10.1142/s0217979203020351.
Pełny tekst źródłaNevzorov, Alexander A., i Jack H. Freed. "Direct-product formalism for calculating magnetic resonance signals in many-body systems of interacting spins". Journal of Chemical Physics 115, nr 6 (8.08.2001): 2401–15. http://dx.doi.org/10.1063/1.1382816.
Pełny tekst źródłaTakada, Yasutami, i Takafumi Kita. "Effective-potential expansion method for the many-body problem at finite temperatures. I. Basic formalism". Physical Review A 42, nr 6 (1.09.1990): 3242–50. http://dx.doi.org/10.1103/physreva.42.3242.
Pełny tekst źródłaMakushkina, M., O. Antoshkina i O. Khetselius. "HYPERFINE STRUCTURE PARAMETERS FOR COMPLEX ATOMS WITHIN RELATIVISTIC MANY-BODY PERTURBATION THEORY". Photoelectronics, nr 29 (28.12.2021): 52–59. http://dx.doi.org/10.18524/0235-2435.2020.29.225493.
Pełny tekst źródłaTanaka, Toshiaki. "Parasupersymmetry and N-fold supersymmetry in quantum many-body systems. I: General formalism and second order". Annals of Physics 322, nr 10 (październik 2007): 2350–73. http://dx.doi.org/10.1016/j.aop.2006.11.009.
Pełny tekst źródłaBian, Wensheng, i Conghao Deng. "Direct solution of the many-body Schrödinger equation in the hyperspherical formalism: Formulation of theCFHH-GLFmethod". International Journal of Quantum Chemistry 51, nr 5 (15.08.1994): 285–91. http://dx.doi.org/10.1002/qua.560510504.
Pełny tekst źródłaLubatsch, Andreas, i Regine Frank. "Quantum Many-Body Theory for Exciton-Polaritons in Semiconductor Mie Resonators in the Non-Equilibrium". Applied Sciences 10, nr 5 (6.03.2020): 1836. http://dx.doi.org/10.3390/app10051836.
Pełny tekst źródłaWhitfield, Troy W., i Glenn J. Martyna. "A unified formalism for many-body polarization and dispersion: The quantum Drude model applied to fluid xenon". Chemical Physics Letters 424, nr 4-6 (czerwiec 2006): 409–13. http://dx.doi.org/10.1016/j.cplett.2006.04.035.
Pełny tekst źródłaWang, Hainan, Yanling Lü, Jiaxin Chen, Yuzhi Song, Chengyuan Zhang i Yongqing Li. "An accurate many-body expansion potential energy surface for SiH2 (11 A′) using a switching function formalism". Physical Chemistry Chemical Physics 24, nr 13 (2022): 7759–67. http://dx.doi.org/10.1039/d1cp05432e.
Pełny tekst źródłaPalos, Etienne, Saswata Dasgupta, Eleftherios Lambros i Francesco Paesani. "Data-driven many-body potentials from density functional theory for aqueous phase chemistry". Chemical Physics Reviews 4, nr 1 (marzec 2023): 011301. http://dx.doi.org/10.1063/5.0129613.
Pełny tekst źródłaBalaž, Antun, Ivana Vidanović, Aleksandar Bogojević, Aleksandar Belić i Axel Pelster. "Fast converging path integrals for time-dependent potentials: II. Generalization to many-body systems and real-time formalism". Journal of Statistical Mechanics: Theory and Experiment 2011, nr 03 (4.03.2011): P03005. http://dx.doi.org/10.1088/1742-5468/2011/03/p03005.
Pełny tekst źródłaLi, Jing, Gabriele D’Avino, Ivan Duchemin, David Beljonne i Xavier Blase. "Combining the Many-Body GW Formalism with Classical Polarizable Models: Insights on the Electronic Structure of Molecular Solids". Journal of Physical Chemistry Letters 7, nr 14 (12.07.2016): 2814–20. http://dx.doi.org/10.1021/acs.jpclett.6b01302.
Pełny tekst źródłaCampana, L. S., A. Cavallo, L. De Cesare, U. Esposito i A. Naddeo. "Thermodynamics of the Classical Planar Ferromagnet Close to the Zero-Temperature Critical Point: A Many-Body Approach". Advances in Condensed Matter Physics 2012 (2012): 1–15. http://dx.doi.org/10.1155/2012/619513.
Pełny tekst źródłaHertl, Nils, Alexander Kandratsenka i Alec M. Wodtke. "Effective medium theory for bcc metals: electronically non-adiabatic H atom scattering in full dimensions". Physical Chemistry Chemical Physics 24, nr 15 (2022): 8738–48. http://dx.doi.org/10.1039/d2cp00087c.
Pełny tekst źródłaSoler-Polo, Diego, José Ortega i Fernando Flores. "A local-orbital density functional formalism for a many-body atomic Hamiltonian: Hubbard–Hund’s coupling and DFT + U functional". Journal of Physics: Condensed Matter 33, nr 42 (12.08.2021): 425604. http://dx.doi.org/10.1088/1361-648x/ac1155.
Pełny tekst źródłaMullins, Nicki, Mauricio Hippert, Lorenzo Gavassino i Jorge Noronha. "A new approach to stochastic relativistic fluid dynamics from information flow". EPJ Web of Conferences 296 (2024): 13001. http://dx.doi.org/10.1051/epjconf/202429613001.
Pełny tekst źródłaOSTERLOH, ANDREAS. "ENTANGLEMENT AND ITS MULTIPARTITE EXTENSIONS". International Journal of Modern Physics B 27, nr 01n03 (26.11.2012): 1345018. http://dx.doi.org/10.1142/s0217979213450185.
Pełny tekst źródłaPang, Jin-Yi. "Three-particle system in a finite volume: formalism, quantization condition, spectrum and energy shift". EPJ Web of Conferences 241 (2020): 02005. http://dx.doi.org/10.1051/epjconf/202024102005.
Pełny tekst źródłaYue, Shuwen, Marc Riera, Raja Ghosh, Athanassios Z. Panagiotopoulos i Francesco Paesani. "Transferability of data-driven, many-body models for CO2 simulations in the vapor and liquid phases". Journal of Chemical Physics 156, nr 10 (14.03.2022): 104503. http://dx.doi.org/10.1063/5.0080061.
Pełny tekst źródłaAl-Maaitah, Ibtisam F. "Total and Viscosity Cross Sections for Krypton Gas at Boiling Point". Applied Physics Research 11, nr 2 (30.03.2019): 88. http://dx.doi.org/10.5539/apr.v11n2p88.
Pełny tekst źródłaBERAKDAR, J. "SCATTERING PATH FORMALISM FOR THE PROPAGATION OF INTERACTING COMPOUNDS IN ORDERED AND DISORDERED MATERIALS". Surface Review and Letters 07, nr 03 (czerwiec 2000): 205–10. http://dx.doi.org/10.1142/s0218625x00000257.
Pełny tekst źródłaSurján, Péter R., Dóra Kőhalmi i Ágnes Szabados. "A note on perturbation-adapted perturbation theory". Journal of Chemical Physics 156, nr 11 (21.03.2022): 116102. http://dx.doi.org/10.1063/5.0085350.
Pełny tekst źródła