Gotowa bibliografia na temat „Manganese TWIP/TRIP Steels”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Manganese TWIP/TRIP Steels”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Manganese TWIP/TRIP Steels"
Borek, Wojciech, Małgorzata Czaja, Krzysztof Labisz, Tomasz Tański, Mariusz Krupiński i Stanislav Rusz. "High Manganese Austenitic X6MnSiAlNbTi26-3-3 Steel - Characteristic, Structures and Properties". Advanced Materials Research 1036 (październik 2014): 18–23. http://dx.doi.org/10.4028/www.scientific.net/amr.1036.18.
Pełny tekst źródłaWang, Li Hui, Di Tang, Hai Tao Jiang, Ji Bin Liu i Yu Chen. "Effects of Different Manganese Content on Microstructures and Properties of TWIP Steel". Advanced Materials Research 399-401 (listopad 2011): 254–58. http://dx.doi.org/10.4028/www.scientific.net/amr.399-401.254.
Pełny tekst źródłaWietbrock, Burkhard, M. Bambach, S. Seuren i G. Hirt. "Homogenization Strategy and Material Characterization of High-Manganese TRIP and TWIP Steels". Materials Science Forum 638-642 (styczeń 2010): 3134–39. http://dx.doi.org/10.4028/www.scientific.net/msf.638-642.3134.
Pełny tekst źródłaMuskalski, Zbigniew, Sylwia Wiewiórowska i Marcin Pełka. "The Mechanical Properties and Structure Evolution for High-Manganese TWIP Steel Wires". Solid State Phenomena 199 (marzec 2013): 524–27. http://dx.doi.org/10.4028/www.scientific.net/ssp.199.524.
Pełny tekst źródłaKim, Sung Joon. "Effects of Manganese Content and Heat Treatment Condition on Mechanical Properties and Microstructures of Fine-Grained Low Carbon TRIP-Aided Steels". Materials Science Forum 638-642 (styczeń 2010): 3313–18. http://dx.doi.org/10.4028/www.scientific.net/msf.638-642.3313.
Pełny tekst źródłaDobrzański, Leszek Adam, Wojciech Borek i Janusz Mazurkiewicz. "Influence of Thermo-Mechanical Treatments on Structure and Mechanical Properties of High-Mn Steel". Advanced Materials Research 1127 (październik 2015): 113–19. http://dx.doi.org/10.4028/www.scientific.net/amr.1127.113.
Pełny tekst źródłaKozłowska, Aleksandra, Barbara Grzegorczyk, Mateusz Morawiec i Adam Grajcar. "Explanation of the PLC Effect in Advanced High-Strength Medium-Mn Steels. A Review". Materials 12, nr 24 (12.12.2019): 4175. http://dx.doi.org/10.3390/ma12244175.
Pełny tekst źródłaDobrzański, L. A., i W. Borek. "Structure and Properties of High-Manganese TWIP, TRIP and TRIPLEX Steels". Australian Journal of Multi-Disciplinary Engineering 9, nr 2 (styczeń 2013): 95–103. http://dx.doi.org/10.7158/14488388.2013.11464849.
Pełny tekst źródłaSolana Reyes, Yadira, JOSE ANGEL RAMOS BANDERAS, PEDRO GARNICA GONZALEZ i Alondra Jacqueline BOCANEGRA HUERAMO. "MECHANICAL BEHAVIOR OF AN HIGH STRENGHT STEEL (AHSS) WITH MEDIUM MN CONTENT IN TWO ROLLING CONDITIONS: HOT AND WARM". DYNA 98, nr 5 (1.09.2023): 521–26. http://dx.doi.org/10.6036/10895.
Pełny tekst źródłaBordone, Matías, Juan Perez-Ipiña, Raúl Bolmaro, Alfredo Artigas i Alberto Monsalve. "Mechanical Properties and Microstructural Aspects of Two High-Manganese Steels with TWIP/TRIP Effects: A Comparative Study". Metals 11, nr 1 (25.12.2020): 24. http://dx.doi.org/10.3390/met11010024.
Pełny tekst źródłaRozprawy doktorskie na temat "Manganese TWIP/TRIP Steels"
Saeed-Akbari, Alireza [Verfasser]. "Mechanism Maps, Mechanical Properties, and Flow Behavior in High-Manganese TRIP/TWIP and TWIP Steels / Alireza Saeed-Akbari". Aachen : Shaker, 2011. http://d-nb.info/107408795X/34.
Pełny tekst źródłaMendonça, Roberto Ramon. "Soldagem por fricção e mistura mecânica de aço austenítico alto manganês com efeito TRIP". Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/18/18158/tde-14102014-082116/.
Pełny tekst źródłaThe development and application of new light materials with superior mechanical properties is extremely important to weight reduction in vehicles and consequently reduction of greenhouse gases emission. The Fe-Mn-C steels with high Mn (20-30%) are a recent development of austenitic steels, which, due to their different mechanisms of deformation, possesses high strength and high ductility as well. In addition, this new type of structural steel allows an effective reduction of manufacturing costs due to its reduced processing time (it does not require special heat treatments and controlled thermo mechanical processing). Welding has been one of the most important processes for joining metals. Among the available welding processes, friction stir welding (FSW) is notable for being a solid state process with great advantages over the conventional welding methods. In the mettalurgical point of view, welding dissimilar materials is a significant advantage of FSW over the other process. The main reason is the reduction of mixture of material and phase transformations between the incompatible materials in the weld. Moreover, grain refinement is another advantage from the process. The present study aimed to produce laboratorial scale high Mn steels with TRIP effect, investigate the impact of tool speed ont the microstructure and mechanical properties of friction stir welded joints. The microstructure of the welded joints exhibited only the stirred zone (SZ) and the base material (BM), besides the presence of ´onion rings´ within the stirred zone. The SZ exhibited no signs of martensite suggesting that dynamic recrystallization have occurred for all the speed tested. Moreover, the grains in the SZ had equiaxial morphology and were significantly refined. The fracture of the tensile specimens occurred in the base material, bringing to light that the welding process was beneficial to the mechanical properties. Furthermore, the variation of heat input achieved with the speed did not compromise the quality of welded joints.
Chen, Zhenglin. "Modeling of Microstructure Evolution Induced by Surface Mechanical Attrition Treatment in TWIP/TRIP Steels". Thesis, Troyes, 2020. http://www.theses.fr/2020TROY0017.
Pełny tekst źródłaThis work focuses on modeling the microstructure evolution induced by SMAT in TWIP and/or TRIP steels. The features of the generated gradient microstructure of a 304L TWIP/TRIP steel are characterized by SEM, XRD, and nanoindentation. Nanoindentation is applied on different layers for the investigation of the mechanical properties of the gradient microstructure. Based on the experimental results, a dislocation density model considering the influence of twinning and martensitic transformation of TWIP/TRIP steel is proposed to investigate the effect of SMAT controlling parameters. Then the dislocation density of the austenite and that of the martensite as well as the volume fraction of twinning and martensitic transformation during impact loading is numerically evaluated using a full finite element model. Afterwards, to study the evolution of the damage during the SMAT process, the damage was introduced in the dislocation density model. Finally, a dislocation density based visco-elastoplastic model considering the effect of grain size, dislocation density, twin, and strain rate was proposed to further understand the effect of impact loadings on the mechanical properties of TWIP/TRIP steel with gradient microstructure based on the results of nanoindentation tests. Then to study the overall elastoplastic response of the SMATed material, the rule of mixtures is used by considering the gradient material as a gradient structure consisting of different layers with distinct microstructures and mechanical properties
Bouet, Michael P. "The effect of molybdenum in silicon-manganese-niobium TRIP steels". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0035/MQ64212.pdf.
Pełny tekst źródłaBouet, Michael P. "The effect of molybdenum in silicon-manganese-niobium TRIP steels /". Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=30236.
Pełny tekst źródłaIn the current TRIP grades, Si is a key elemental addition. However, in levels exceeding 1.0 wt.%, it is unpopular as it is responsible for a tenacious oxide layer. In this work, it is suggested that Mo may potentially replace Si in part.
Multi pass rolling simulations were also performed using torsion. (Abstract shortened by UMI.)
Wang, Meimei Verfasser], Dierk [Akademischer Betreuer] [Raabe i Wolfgang [Akademischer Betreuer] Bleck. "Nanolaminate TRIP-TWIP martensitic matrix steels : design and characterization / Meimei Wang ; Dierk Raabe, Wolfgang Bleck". Aachen : Universitätsbibliothek der RWTH Aachen, 2015. http://d-nb.info/1130589994/34.
Pełny tekst źródłaWang, Meimei [Verfasser], Dierk [Akademischer Betreuer] Raabe i Wolfgang [Akademischer Betreuer] Bleck. "Nanolaminate TRIP-TWIP martensitic matrix steels : design and characterization / Meimei Wang ; Dierk Raabe, Wolfgang Bleck". Aachen : Universitätsbibliothek der RWTH Aachen, 2015. http://d-nb.info/1130589994/34.
Pełny tekst źródłaGuo, Xiaofei [Verfasser]. "Influences of Microstructure, Alloying Elements and Forming Parameters on Delayed Fracture in TRIP/TWIP-Aided Austenitic Steels / Xiaofei Guo". Aachen : Shaker, 2012. http://d-nb.info/1066197296/34.
Pełny tekst źródłaMosecker, Linda Verfasser], Wolfgang [Akademischer Betreuer] [Bleck i Joachim [Akademischer Betreuer] Mayer. "Materials design of high nitrogen manganese austenitic stainless TWIP steels for strip casting / Linda Mosecker ; Wolfgang Bleck, Joachim Mayer". Aachen : Universitätsbibliothek der RWTH Aachen, 2016. http://d-nb.info/1126040770/34.
Pełny tekst źródłaMosecker, Linda [Verfasser], Wolfgang [Akademischer Betreuer] Bleck i Joachim [Akademischer Betreuer] Mayer. "Materials design of high nitrogen manganese austenitic stainless TWIP steels for strip casting / Linda Mosecker ; Wolfgang Bleck, Joachim Mayer". Aachen : Universitätsbibliothek der RWTH Aachen, 2016. http://d-nb.info/1126040770/34.
Pełny tekst źródłaKsiążki na temat "Manganese TWIP/TRIP Steels"
Weidner, Anja. Deformation Processes in TRIP/TWIP Steels. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37149-4.
Pełny tekst źródłaBiermann, Horst, i Christos G. Aneziris, red. Austenitic TRIP/TWIP Steels and Steel-Zirconia Composites. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42603-3.
Pełny tekst źródłaWeidner, Anja. Deformation Processes in TRIP/TWIP Steels: In-Situ Characterization Techniques. Springer International Publishing AG, 2021.
Znajdź pełny tekst źródłaWeidner, Anja. Deformation Processes in TRIP/TWIP Steels: In-Situ Characterization Techniques. Springer, 2020.
Znajdź pełny tekst źródłaAneziris, Christos G., i Horst Biermann. Austenitic TRIP/TWIP Steels and Steel-Zirconia Composites: Design of Tough, Transformation-Strengthened Composites and Structures. Springer International Publishing AG, 2020.
Znajdź pełny tekst źródłaAneziris, Christos G., i Horst Biermann. Austenitic TRIP/TWIP Steels and Steel-Zirconia Composites: Design of Tough, Transformation-Strengthened Composites and Structures. Springer International Publishing AG, 2020.
Znajdź pełny tekst źródłaBiermann, Horst. Austenitic TRIP/TWIP Steels and Steel-Zirconia Composites: Design of Tough, Transformation-Strengthened Composites and Structures. Springer Nature, 2020.
Znajdź pełny tekst źródłaCzęści książek na temat "Manganese TWIP/TRIP Steels"
Dobrzański, Leszek A., Janusz Mazurkiewicz, Wojciech Borek i Małgorzata Czaja. "Newly-Developed High-Manganese Fe–Mn–(Al, Si) Austenitic TWIP and TRIP Steels". W Rolling of Advanced High Strength Steels, 224–88. Boca Raton, FL : CRC Press, [2017]: CRC Press, 2017. http://dx.doi.org/10.1201/9781315120577-6.
Pełny tekst źródłaWeidner, Anja. "Advanced High-Strength Steels". W Deformation Processes in TRIP/TWIP Steels, 71–98. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37149-4_4.
Pełny tekst źródłaWeidner, Anja. "Motivation". W Deformation Processes in TRIP/TWIP Steels, 1–5. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37149-4_1.
Pełny tekst źródłaWeidner, Anja. "Correction to: Deformation Processes in TRIP/TWIP Steels". W Deformation Processes in TRIP/TWIP Steels, C1. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37149-4_10.
Pełny tekst źródłaWeidner, Anja. "Plastic Deformation and Strain Localizations". W Deformation Processes in TRIP/TWIP Steels, 7–45. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37149-4_2.
Pełny tekst źródłaWeidner, Anja. "Martensitic Phase Transformation". W Deformation Processes in TRIP/TWIP Steels, 47–69. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37149-4_3.
Pełny tekst źródłaWeidner, Anja. "In Situ Techniques for Characterization of Strain Localizations and Time Sequence of Deformation Processes". W Deformation Processes in TRIP/TWIP Steels, 99–203. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37149-4_5.
Pełny tekst źródłaWeidner, Anja. "Object of Investigations—High-Alloy Fe–16Cr–6Mn–xNi–0.05C Cast Steels with TRIP/TWIP Effect". W Deformation Processes in TRIP/TWIP Steels, 205–44. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37149-4_6.
Pełny tekst źródłaWeidner, Anja. "Case Studies on Localized Deformation Processes in High-Alloy Fe–16Cr–6Mn–xNi–0.05C Cast Steels". W Deformation Processes in TRIP/TWIP Steels, 245–364. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37149-4_7.
Pełny tekst źródłaWeidner, Anja. "Prospects of Complementary In Situ Techniques". W Deformation Processes in TRIP/TWIP Steels, 365–84. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37149-4_8.
Pełny tekst źródłaStreszczenia konferencji na temat "Manganese TWIP/TRIP Steels"
da Silva Lima, M. N. "Microstructural and corrosion study of a “non-comercial” high manganese steel". W Superplasticity in Advanced Materials. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902615-37.
Pełny tekst źródłaCurtze, S., V. T. Kuokkala, M. Hokka i T. Saarinen. "Microstructure and texture evolution in high manganese TWIP steels". W DYMAT 2009 - 9th International Conferences on the Mechanical and Physical Behaviour of Materials under Dynamic Loading. Les Ulis, France: EDP Sciences, 2009. http://dx.doi.org/10.1051/dymat/2009141.
Pełny tekst źródłaZhang, X., T. Sawaguchi, K. Ogawa, F. Yin i X. Zhao. "Deformation microstructure of TRIP/TWIP Steels at the early deformation stages". W ESOMAT 2009 - 8th European Symposium on Martensitic Transformations. Les Ulis, France: EDP Sciences, 2009. http://dx.doi.org/10.1051/esomat/200905029.
Pełny tekst źródłaJABŁOŃSKA, M. B. "Specific behavior of high-manganese steels in the context of temperature increase during dynamic deformation". W Material Forming. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902479-92.
Pełny tekst źródłaMerwin, M. J. "Hot- and Cold-Rolled Low-Carbon Manganese TRIP Steels". W SAE World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2007. http://dx.doi.org/10.4271/2007-01-0336.
Pełny tekst źródłaPodany, Pavel, Jaromir Dlouhy, Martina Koukolikova, Petr Martinek, Radek Prochazka, Tomas Kubina i Michal Duchek. "Phase composition of 15Mn-0.1C-0.4/1.4Al-Si TRIP/TWIP steels after cold rolling and annealing". W 2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE). IEEE, 2016. http://dx.doi.org/10.1109/icmae.2016.7549520.
Pełny tekst źródła