Artykuły w czasopismach na temat „Magnetotransport”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Magnetotransport.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Magnetotransport”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Löhneysen, H. v., H. Bartolf, C. Pfleiderer, F. Obermair, M. Vojta i P. Wölfle. "Magnetotransport in". Physica B: Condensed Matter 378-380 (maj 2006): 44–45. http://dx.doi.org/10.1016/j.physb.2006.01.338.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Wu, Mingxing, Kouta Kondou, Taishi Chen, Satoru Nakatsuji i Yoshichika Otani. "Temperature-induced anomalous magnetotransport in the Weyl semimetal Mn3Ge". AIP Advances 13, nr 4 (1.04.2023): 045102. http://dx.doi.org/10.1063/5.0138208.

Pełny tekst źródła
Streszczenie:
The magnetic Weyl semimetallic state can lead to intriguing magnetotransport, such as chiral anomaly and the layered quantum Hall effect. Mn3X (X = Sn, Ge) is a noncollinear antiferromagnetic semimetal where a Weyl semimetallic state is stabilized by time-reversal symmetry breaking. Compared to the well-studied Mn3Sn, the Weyl fermion-induced magnetotransport in Mn3Ge has been merely studied. Here, we report an in-depth study on the magnetotransport in a microfabricated Mn3Ge single crystal from room temperature to 10 K. We reveal an anomalous anisotropic magnetoresistance with fourfold symmetry and a positive high-field longitudinal magnetoresistance below the critical temperature (160–170 K). The possible origin is the temperature-induced tilting of the Weyl nodes. Our study helps to understand the magnetotransport properties in the Weyl fermion system.
Style APA, Harvard, Vancouver, ISO itp.
3

Pȩkała, M., V. Drozd, J. F. Fagnard, Ph Vanderbemden i M. Ausloos. "Magnetotransport of La0.5Ba0.5MnO3". Journal of Applied Physics 105, nr 1 (styczeń 2009): 013923. http://dx.doi.org/10.1063/1.3032326.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Stankiewicz, Jolanta, i Juan Bartolomé. "Magnetotransport properties ofNd2Fe14B". Physical Review B 59, nr 2 (1.01.1999): 1152–56. http://dx.doi.org/10.1103/physrevb.59.1152.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Noce, Canio, i Mario Cuoco. "Magnetotransport in Sr2RuO4". Physica B: Condensed Matter 284-288 (lipiec 2000): 1972–73. http://dx.doi.org/10.1016/s0921-4526(99)02930-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Movaghar, B., i S. Roth. "Magnetotransport in polyacetylene". Synthetic Metals 63, nr 3 (kwiecień 1994): 163–77. http://dx.doi.org/10.1016/0379-6779(94)90222-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Jalil, M. B. A., S. G. Tan i X. Z. Cheng. "Advanced Modeling Techniques for Micromagnetic Systems". Journal of Nanoscience and Nanotechnology 7, nr 1 (1.01.2007): 46–64. http://dx.doi.org/10.1166/jnn.2007.18006.

Pełny tekst źródła
Streszczenie:
We present a review of micromagnetic and magnetotransport modeling methods which go beyond the standard model. We first give a brief overview of the standard micromagnetic model, which for (i) the steady-state (equilibrium) solution is based on the minimization of the free energy functional, and for (ii) the dynamical solution, relies on the numerical solution of the Landau-Lifshitz-Gilbert (LLG) equation. We present three complements to the standard model, i.e., (i) magnetotransport calculations based on ohmic conduction in the presence of the anisotropic magnetoresistance (AMR) effect, (ii) magnetotransport calculations based on spin-dependent tunneling in the presence of single charge tunneling (Coulomb blockade) effect, and (iii) stochastic micromagnetics, which incorporates the effects of thermal fluctuations via a white-noise thermal field in the LLGequation. All three complements are of practical importance: (i) magnetotransport model either in the ohmic or tunneling transport regimes, enables the conversion of the micromagnetic results to the measurable quantity of magnetoresistance ratio, while (ii) stochastic modeling is essential as the dimensions of the micromagnetic system reduces to the deep submicron regime and approaches the superparamagnetic limit.
Style APA, Harvard, Vancouver, ISO itp.
8

Yang, Kaida, Victor Kryutyanskiy, Irina Kolmychek, Tatiana V. Murzina i R. Alejandra Lukaszew. "Experimental Correlation between Nonlinear Optical and Magnetotransport Properties Observed in Au-Co Thin Films". Journal of Nanomaterials 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/4786545.

Pełny tekst źródła
Streszczenie:
Magnetic materials where at least one dimension is in the nanometer scale typically exhibit different magnetic, magnetotransport, and magnetooptical properties compared to bulk materials. Composite magnetic thin films where the matrix composition, magnetic cluster size, and overall composite film thickness can be experimentally tailored via adequate processing or growth parameters offer a viable nanoscale platform to investigate possible correlations between nonlinear magnetooptical and magnetotransport properties, since both types of properties are sensitive to the local magnetization landscape. It has been shown that the local magnetization contrast affects the nonlinear magnetooptical properties as well as the magnetotransport properties in magnetic-metal/nonmagnetic metal multilayers; thus, nanocomposite films showcase another path to investigate possible correlations between these distinct properties which may prove useful for sensing applications.
Style APA, Harvard, Vancouver, ISO itp.
9

Семенов, С. В., Д. М. Гохфельд, К. Ю. Терентьев i Д. А. Балаев. "Механизмы, определяющие гистерезис магнитосопротивления гранулярного ВТСП в присутствии парамагнитного вклада, на примере HoBa-=SUB=-2-=/SUB=-Cu-=SUB=-3-=/SUB=-O-=SUB=-7-delta-=/SUB=-". Физика твердого тела 63, nr 10 (2021): 1462. http://dx.doi.org/10.21883/ftt.2021.10.51392.114.

Pełny tekst źródła
Streszczenie:
The hysteretic magnetoresistance of granular high-temperature superconductor (HTSC) HoBa2Cu3O7-δ is investigated. Superconductors of the YBCO family with magnetic rare earth elements (Nd, Ho, Er, Sm, Yb, Dy) in place of yttrium are characterized by a significant paramagnetic contribution to the total magnetization. Impact of this paramagnetic contribution on the magnetotransport properties is analyzed using the concept of an effective field in an intergranular medium. Lines of magnetic induction from paramagnetic moments do not concentrate in intergranular boundaries, and, thus, have an insignificant effect on magnetotransport properties of granular HTSC. At the same time, there are strong concentration of magnetic flux in the intergranular boundaries due to Meissner currents and Abrikosov vortices. This magnetic flux compression determines the magnetotransport properties of granular HTSCs, including YBCO with magnetic rare earth elements.
Style APA, Harvard, Vancouver, ISO itp.
10

Kim, Yun-Ki, Sung-Lae Cho i Ketterson J.B. "Magnetotransport Properties of MnGeP2Films". Journal of the Korean Magnetics Society 19, nr 4 (31.08.2009): 133–37. http://dx.doi.org/10.4283/jkms.2009.19.4.133.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Yanagihara, H., i M. B. Salamon. "Magnetotransport Properties of CrO2." Journal of the Magnetics Society of Japan 27, nr 4 (2003): 285–88. http://dx.doi.org/10.3379/jmsjmag.27.285.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Davies, R. A., D. J. Newson, T. G. Powell i M. J. Kelly. "Magnetotransport in semiconductor superlattices". Semiconductor Science and Technology 2, nr 1 (1.01.1987): 61–64. http://dx.doi.org/10.1088/0268-1242/2/1/009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Mukherjee, A. K., i Reghu Menon. "Magnetotransport in doped polyaniline". Journal of Physics: Condensed Matter 17, nr 12 (12.03.2005): 1947–60. http://dx.doi.org/10.1088/0953-8984/17/12/017.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Stankiewicz, Jolanta, i Konstantin P. Skokov. "Magnetotransport in Tb2Fe17single crystals". Journal of Physics: Conference Series 303 (6.07.2011): 012019. http://dx.doi.org/10.1088/1742-6596/303/1/012019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Suzuki, Katsuhiko, i P. M. Tedrow. "Resistivity and magnetotransport inCrO2films". Physical Review B 58, nr 17 (1.11.1998): 11597–602. http://dx.doi.org/10.1103/physrevb.58.11597.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Mucha, Jan, Marek P ka a, Jadwiga Szyd owska, Wojciech Gadomski, Jun Akimitsu, Jean-Fran ois Fagnard, Philippe Vanderbemden, Rudi Cloots i Marcel Ausloos. "Magnetotransport study of MgB2superconductor". Superconductor Science and Technology 16, nr 10 (27.08.2003): 1167–72. http://dx.doi.org/10.1088/0953-2048/16/10/308.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Seshadri, R., A. Maignan, M. Hervieu, N. Nguyen i B. Raveau. "Complex magnetotransport in LaSr2Mn2O7". Solid State Communications 101, nr 6 (luty 1997): 453–57. http://dx.doi.org/10.1016/s0038-1098(96)00628-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Zhang, Enze, Yanwen Liu, Weiyi Wang, Cheng Zhang, Peng Zhou, Zhi-Gang Chen, Jin Zou i Faxian Xiu. "Magnetotransport Properties of Cd3As2Nanostructures". ACS Nano 9, nr 9 (27.08.2015): 8843–50. http://dx.doi.org/10.1021/acsnano.5b02243.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Stankiewicz, Jolanta, i Juan Bartolomé. "Magnetotransport properties of compounds". Journal of Magnetism and Magnetic Materials 290-291 (kwiecień 2005): 1172–76. http://dx.doi.org/10.1016/j.jmmm.2004.11.571.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Kepaptsoglou, D. M., K. Efthimiadis, P. Svec i E. Hristoforou. "Magnetotransport studies in ribbons". Journal of Magnetism and Magnetic Materials 304, nr 2 (wrzesień 2006): e583-e585. http://dx.doi.org/10.1016/j.jmmm.2006.02.182.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Suryanarayanan, R., i V. Gasumyants. "Magnetotransport coefficients of Sm0.55Sr0.45MnO3". Journal of Physics and Chemistry of Solids 66, nr 1 (styczeń 2005): 143–45. http://dx.doi.org/10.1016/j.jpcs.2004.08.040.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Köhler, R., H. Fischer, C. Schank, C. Geibel, F. Steglich, N. Sato i T. Komatsubara. "Anisotropic magnetotransport in UPd2Al3". Physica B: Condensed Matter 206-207 (luty 1995): 430–32. http://dx.doi.org/10.1016/0921-4526(94)00481-a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Bruus, Henrik, Karsten Flensberg i Henrik Smith. "Magnetotransport in quantum wires." Physica B: Condensed Matter 194-196 (luty 1994): 1239–40. http://dx.doi.org/10.1016/0921-4526(94)90949-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Ranz, E., D. Lavielle, L. A. Cury, J. C. Portal, M. Razeghi i F. Omnes. "Magnetotransport measurements in heterostructures". Superlattices and Microstructures 8, nr 2 (styczeń 1990): 245–48. http://dx.doi.org/10.1016/0749-6036(90)90101-c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

D'Onofrio, L., A. Hamzić i A. Fert. "Magnetotransport properties of YbNiSn". Physica B: Condensed Matter 171, nr 1-4 (maj 1991): 266–68. http://dx.doi.org/10.1016/0921-4526(91)90528-m.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Weiss, D., K. Richter, E. Vasiliadou i G. Lütjering. "Magnetotransport in antidot arrays". Surface Science 305, nr 1-3 (marzec 1994): 408–18. http://dx.doi.org/10.1016/0039-6028(94)90927-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Mahendiran, R., A. Maignan, M. Hervieu, C. Martin i B. Raveau. "Anomalous magnetotransport in Pr0.5Ca0.5Mn0.99Cr0.01O3". Applied Physics Letters 77, nr 10 (4.09.2000): 1517–19. http://dx.doi.org/10.1063/1.1290726.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Klitzing, K. v. "Magnetotransport in semiconductor nanostructures". Physica A: Statistical Mechanics and its Applications 200, nr 1-4 (listopad 1993): 1–3. http://dx.doi.org/10.1016/0378-4371(93)90499-t.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Zholudev, Maksim S., Aleksandr M. Kadykov, Mikhail A. Fadeev, Michal Marcinkiewicz, Sandra Ruffenach, Christophe Consejo, Wojciech Knap i in. "Experimental Observation of Temperature-Driven Topological Phase Transition in HgTe/CdHgTe Quantum Wells". Condensed Matter 4, nr 1 (1.03.2019): 27. http://dx.doi.org/10.3390/condmat4010027.

Pełny tekst źródła
Streszczenie:
We report on the comparison between temperature-dependent magneto-absorption and magnetotransport spectroscopy of HgTe/CdHgTe quantum wells in terms of the detection of the phase transition between the topological insulator and band insulator states. Our results demonstrate that temperature-dependent magnetospectroscopy is a powerful tool to discriminate trivial and topological insulator phases, yet the magnetotransport method is shown to have advantages for the clear manifestation of the phase transition with accurate quantitative values of the transition parameter (i.e., critical magnetic field Bc).
Style APA, Harvard, Vancouver, ISO itp.
30

KIM, K. H., J. B. BETTS, M. JAIME, A. H. LACERDA, G. S. BOEBINGER, C. U. JUNG, H. J. KIM i in. "Mg AS A MAIN SOURCE FOR THE DIVERSE MAGNETOTRANSPORT PROPERTIES OF MgB2". International Journal of Modern Physics B 16, nr 20n22 (30.08.2002): 3185–88. http://dx.doi.org/10.1142/s0217979202013894.

Pełny tekst źródła
Streszczenie:
Magnetotransport properties of pure Mg metal and MgB 2 samples with varying amounts of excess Mg were systematically studied in magnetic fields up to 18 T. It is found that the both the Mg and inhomogeneous MgB 2 samples show large low temperature conductivity, residual resistance ratio (RRR) and magnetoresistance (MR) under high fields. Calculations of the generalized effective medium theory show that the large RRR and MR of the inhomogeneous MgB 2 samples can be explained by unusual magnetotransport properties of pure Mg metal.
Style APA, Harvard, Vancouver, ISO itp.
31

Sagar, Rizwan Ur Rehman, Chen Lifang, Ayaz Ali, Muhammad Farooq Khan, Mudassar Abbas, Muhamad Imran Malik, Karim Khan, Jinming Zeng, Tauseef Anwar i Tongxiang Liang. "Unusual magnetotransport properties in graphene fibers". Physical Chemistry Chemical Physics 22, nr 44 (2020): 25712–19. http://dx.doi.org/10.1039/d0cp05209d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

KVON, Z. D., E. B. OLSHANETSKY, D. A. KOZLOV, N. N. MIKHAILOV i S. A. DVORETSKII. "A NEW TWO-DIMENSIONAL ELECTRON-HOLE SYSTEM". International Journal of Modern Physics B 23, nr 12n13 (20.05.2009): 2888–92. http://dx.doi.org/10.1142/s0217979209062499.

Pełny tekst źródła
Streszczenie:
A two-dimensional electron-hole system consisting of light high-mobility electrons with a density of Ns = (4 - 7) × 1010 cm -2 and heavier lower-mobility holes with a density Ps = (0.7 - 1.6) × 1011 cm -2 has been discovered in a quantum well based on mercury telluride with the (013) surface orientation. The system exhibits a number of specific magnetotransport properties in both the classical magnetotransport (positive magnetoresistance and sign-variable Hall effect) and the quantum Hall effect regime. These properties are associated with the coexistence of two-dimensional electrons and holes and actually manifest the first realization of a two-dimensional semimetal.
Style APA, Harvard, Vancouver, ISO itp.
33

Im, W. S., T. S. Yoon, F. C. Yu, C. X. Gao, D. J. Kim, Y. E. Ibm, H. J. Kim, C. S. Kim i C. O. Kim. "Magnetotransport of Be-doped GaMnAs". Korean Journal of Materials Research 15, nr 1 (1.01.2005): 73–77. http://dx.doi.org/10.3740/mrsk.2005.15.1.073.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Rosch, A. "Magnetotransport in nearly antiferromagnetic metals". Physical Review B 62, nr 8 (15.08.2000): 4945–62. http://dx.doi.org/10.1103/physrevb.62.4945.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

McAlister, S. P., M. Olivier i T. Siegrist. "Magnetotransport in (UxCe1−x)2Zn17alloys". Journal of Applied Physics 61, nr 8 (15.04.1987): 4370–72. http://dx.doi.org/10.1063/1.338425.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Bashkin, Eugene P. "Magnetotransport effects in paramagnetic gases". Physical Review B 44, nr 22 (1.12.1991): 12440–52. http://dx.doi.org/10.1103/physrevb.44.12440.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Tso, H. C., i P. Vasilopoulos. "Magnetotransport along a quantum wire". Physical Review B 44, nr 23 (15.12.1991): 12952–58. http://dx.doi.org/10.1103/physrevb.44.12952.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Westerburg, W., D. Reisinger i G. Jakob. "Epitaxy and magnetotransport ofSr2FeMoO6thin films". Physical Review B 62, nr 2 (1.07.2000): R767—R770. http://dx.doi.org/10.1103/physrevb.62.r767.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Maki, Kazumi. "Magnetotransport in spin-density waves". Physical Review B 47, nr 17 (1.05.1993): 11506–9. http://dx.doi.org/10.1103/physrevb.47.11506.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Cebulski, J., W. Gebicki, V. I. Ivanov-Omskii, J. Polit i E. M. Sheregii. "Magnetotransport phenomena in multimode lattices". Journal of Physics: Condensed Matter 10, nr 38 (28.09.1998): 8587–610. http://dx.doi.org/10.1088/0953-8984/10/38/018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Xu, Hongqi. "Magnetotransport through mesoscopic antidot arrays". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 15, nr 4 (lipiec 1997): 1335. http://dx.doi.org/10.1116/1.589461.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Sun, J. Z., L. Krusin-Elbaum, A. Gupta, Gang Xiao, P. R. Duncombe i S. S. P. Parkin. "Magnetotransport in doped manganate perovskites". IBM Journal of Research and Development 42, nr 1 (styczeń 1998): 89–102. http://dx.doi.org/10.1147/rd.421.0089.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Flie\Ser, M., G. J. O. Schmidt i H. Spohn. "Magnetotransport of the Sinai billiard". Physical Review E 53, nr 6 (1.06.1996): 5690–97. http://dx.doi.org/10.1103/physreve.53.5690.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Zhao, Y. M., P. F. Zhou, X. J. Yang, G. M. Qiu i L. Ping. "Magnetotransport properties of SrFeO2.95 perovskite". Solid State Communications 120, nr 7-8 (październik 2001): 283–87. http://dx.doi.org/10.1016/s0038-1098(01)00389-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Samuilov, V. A., J. Galibert, V. K. Ksenevich, V. J. Goldman, M. Rafailovich, J. Sokolov, I. A. Bashmakov i V. A. Dorosinets. "Magnetotransport in mesoscopic carbon networks". Physica B: Condensed Matter 294-295 (styczeń 2001): 319–23. http://dx.doi.org/10.1016/s0921-4526(00)00668-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Rey-Cabezudo, C., M. Sánchez-Andújar, J. Mira, A. Fondado, J. Rivas i M. A. Señarís-Rodríguez. "Magnetotransport in Gd1-xSrxCoO3(0". Chemistry of Materials 14, nr 2 (luty 2002): 493–98. http://dx.doi.org/10.1021/cm010051a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Huang, Yi-Chi, P. C. Lee, C. H. Chien, F. Y. Chiu, Y. Y. Chen i Sergey R. Harutyunyan. "Magnetotransport properties of Sb2Te3 nanoflake". Physica B: Condensed Matter 452 (listopad 2014): 108–12. http://dx.doi.org/10.1016/j.physb.2014.07.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Abe, Yasushi, Yoichi Ando, J. Takeya, H. Tanabe, T. Watauchi, I. Tanaka i H. Kojima. "Normal-state magnetotransport inLa1.905Ba0.095CuO4single crystals". Physical Review B 59, nr 22 (1.06.1999): 14753–56. http://dx.doi.org/10.1103/physrevb.59.14753.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Nagao, Taro. "Magnetotransport through Random Antidot Lattices". Journal of the Physical Society of Japan 65, nr 8 (15.08.1996): 2606–9. http://dx.doi.org/10.1143/jpsj.65.2606.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Xu, Qingyu, Lars Hartmann, Heidemarie Schmidt, Holger Hochmuth, Michael Lorenz, Annette Setzer, Pablo Esquinazi, Christoph Meinecke i Marius Grundmann. "Magnetotransport properties of Zn90Mn7.5Cu2.5O100 films". Thin Solid Films 516, nr 6 (styczeń 2008): 1160–63. http://dx.doi.org/10.1016/j.tsf.2007.06.145.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii