Gotowa bibliografia na temat „Magnetosphere system”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Magnetosphere system”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Magnetosphere system"
Bunce, E. J., i S. W. H. Cowley. "A note on the ring current in Saturn’s magnetosphere: Comparison of magnetic data obtained during the Pioneer-11 and Voyager-1 and -2 fly-bys". Annales Geophysicae 21, nr 3 (31.03.2003): 661–69. http://dx.doi.org/10.5194/angeo-21-661-2003.
Pełny tekst źródłaChelpanov, Maksim, Sergey Anfinogentov, Danila Kostarev, Olga Mikhailova, Aleksandr Rubtsov, Viktor Fedenev i Andrey Chelpanov. "Review and comparison of MHD wave characteristics at the Sun and in Earth’s magnetosphere". Solnechno-Zemnaya Fizika 8, nr 4 (24.12.2022): 3–28. http://dx.doi.org/10.12737/szf-84202201.
Pełny tekst źródłaAlexeev, I. I., i E. S. Belenkaya. "Modeling of the Jovian Magnetosphere". Annales Geophysicae 23, nr 3 (30.03.2005): 809–26. http://dx.doi.org/10.5194/angeo-23-809-2005.
Pełny tekst źródłaPaty, Carol, Chris S. Arridge, Ian J. Cohen, Gina A. DiBraccio, Robert W. Ebert i Abigail M. Rymer. "Ice giant magnetospheres". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, nr 2187 (9.11.2020): 20190480. http://dx.doi.org/10.1098/rsta.2019.0480.
Pełny tekst źródłaBelenkaya, E. S., I. I. Alexeev, V. V. Kalegaev i M. S. Blokhina. "Definition of Saturn's magnetospheric model parameters for the Pioneer 11 flyby". Annales Geophysicae 24, nr 3 (19.05.2006): 1145–56. http://dx.doi.org/10.5194/angeo-24-1145-2006.
Pełny tekst źródłaLopez, R. E., V. G. Merkin i J. G. Lyon. "The role of the bow shock in solar wind-magnetosphere coupling". Annales Geophysicae 29, nr 6 (25.06.2011): 1129–35. http://dx.doi.org/10.5194/angeo-29-1129-2011.
Pełny tekst źródłaLai, Ching-Ming, i Jean-Fu Kiang. "Comparative Study on Planetary Magnetosphere in the Solar System". Sensors 20, nr 6 (17.03.2020): 1673. http://dx.doi.org/10.3390/s20061673.
Pełny tekst źródłaArridge, C. S., N. Achilleos i P. Guio. "Electric field variability and classifications of Titan's magnetoplasma environment". Annales Geophysicae 29, nr 7 (19.07.2011): 1253–58. http://dx.doi.org/10.5194/angeo-29-1253-2011.
Pełny tekst źródłaStumpo, Mirko, Giuseppe Consolini, Tommaso Alberti i Virgilio Quattrociocchi. "Measuring Information Coupling between the Solar Wind and the Magnetosphere–Ionosphere System". Entropy 22, nr 3 (28.02.2020): 276. http://dx.doi.org/10.3390/e22030276.
Pełny tekst źródłaNichols, J. D., i S. W. H. Cowley. "Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: effect of precipitation-induced enhancement of the ionospheric Pedersen conductivity". Annales Geophysicae 22, nr 5 (8.04.2004): 1799–827. http://dx.doi.org/10.5194/angeo-22-1799-2004.
Pełny tekst źródłaRozprawy doktorskie na temat "Magnetosphere system"
Rosenqvist, Lisa. "Energy Transfer and Conversion in the Magnetosphere-Ionosphere System". Doctoral thesis, Uppsala University, Department of Astronomy and Space Physics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8716.
Pełny tekst źródłaMagnetized planets, such as Earth, are strongly influenced by the solar wind. The Sun is very dynamic, releasing varying amounts of energy, resulting in a fluctuating energy and momentum exchange between the solar wind and planetary magnetospheres. The efficiency of this coupling is thought to be controlled by magnetic reconnection occurring at the boundary between solar wind and planetary magnetic fields. One of the main tasks in space physics research is to increase the understanding of this coupling between the Sun and other solar system bodies. Perhaps the most important aspect regards the transfer of energy from the solar wind to the terrestrial magnetosphere as this is the main source for driving plasma processes in the magnetosphere-ionosphere system. This may also have a direct practical influence on our life here on Earth as it is responsible for Space Weather effects. In this thesis I investigate both the global scale of the varying solar-terrestrial coupling and local phenomena in more detail. I use mainly the European Space Agency Cluster mission which provide unprecedented three-dimensional observations via its formation of four identical spacecraft. The Cluster data are complimented with observations from a broad range of instruments both onboard spacecraft and from groundbased magnetometers and radars.
A period of very strong solar driving in late October 2003 is investigated. We show that some of the strongest substorms in the history of magnetic recordings were triggered by pressure pulses impacting a quasi-stable magnetosphere. We make for the first time direct estimates of the local energy flow into the magnetotail using Cluster measurements. Observational estimates suggest a good energy balance between the magnetosphere-ionosphere system while empirical proxies seem to suffer from over/under estimations during such extreme conditions.
Another period of extreme interplanetary conditions give rise to accelerated flows along the magnetopause which could account for an enhanced energy coupling between the solar wind and the magnetosphere. We discuss whether such conditions could explain the simultaneous observation of a large auroral spiral across the polar cap.
Contrary to extreme conditions the energy conversion across the dayside magnetopause has been estimated during an extended period of steady interplanetary conditions. A new method to determine the rate at which reconnection occurs is described that utilizes the magnitude of the local energy conversion from Cluster. The observations show a varying reconnection rate which support the previous interpretation that reconnection is continuous but its rate is modulated.
Finally, we compare local energy estimates from Cluster with a global magnetohydrodynamic simulation. The results show that the observations are reliably reproduced by the model and may be used to validate and scale global magnetohydrodynamic models.
Gane, Stuart Carlos. "Continuous pulsation dynamics in the high-latitude magnetosphere-ionosphere system". Thesis, University of Leicester, 2011. http://hdl.handle.net/2381/9695.
Pełny tekst źródłaNakata, Hiroyuki. "The standing toroidal mode oscillations in the magnetosphere-ionosphere system". 京都大学 (Kyoto University), 2000. http://hdl.handle.net/2433/157196.
Pełny tekst źródła本文データは平成22年度国立国会図書館の学位論文(博士)のデジタル化実施により作成された画像ファイルを基にpdf変換したものである
Kyoto University (京都大学)
0048
新制・課程博士
博士(理学)
甲第8164号
理博第2186号
新制||理||1156(附属図書館)
UT51-2000-F68
京都大学大学院理学研究科地球惑星科学専攻
(主査)教授 藤田 茂, 教授 荒木 徹, 助教授 町田 忍
学位規則第4条第1項該当
Bunce, Emma J. "Large-scale current systems in the Jovian magnetosphere". Thesis, University of Leicester, 2001. http://hdl.handle.net/2381/30647.
Pełny tekst źródłaWei, Xing. "Optimization of Strongly Nonlinear Dynamical Systems Using a Modified Genetic Algorithm With Micro-Movement (MGAM)". DigitalCommons@USU, 2009. https://digitalcommons.usu.edu/etd/450.
Pełny tekst źródłaZiemba, Timothy Martin. "Experimental investigation of the mini-magnetospheric plasma propulsion prototype /". Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/9962.
Pełny tekst źródłaLachin, Anoosh. "Low frequency waves in the solar system". Thesis, Imperial College London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267713.
Pełny tekst źródłaRoussos, Elias. "Interactions of weakly or non-magnetized bodies with solar system plasmas Mars and the moons of Saturn". [Katlenburg-Lindau] Copernicus Publ, 2008. http://d-nb.info/988508095/04.
Pełny tekst źródłaCramoysan, Mark. "Modelling current systems associated with substorms : results and use in the location of the substorm current wedge". Thesis, University of York, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306513.
Pełny tekst źródłaRetinò, Alessandro. "Magnetic Reconnection in Space Plasmas : Cluster Spacecraft Observations". Doctoral thesis, Uppsala University, Department of Astronomy and Space Physics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7891.
Pełny tekst źródłaMagnetic reconnection is a universal process occurring at boundaries between magnetized plasmas, where changes in the topology of the magnetic field lead to the transport of charged particles across the boundaries and to the conversion of electromagnetic energy into kinetic and thermal energy of the particles. Reconnection occurs in laboratory plasmas, in solar system plasmas and it is considered to play a key role in many other space environments such as magnetized stars and accretion disks around stars and planets under formation. Magnetic reconnection is a multi-scale plasma process where the small spatial and temporal scales are strongly coupled to the large scales. Reconnection is initiated rapidly in small regions by microphysical processes but it affects very large volumes of space for long times. The best laboratory to experimentally study magnetic reconnection at different scales is the near-Earth space, the so-called Geospace, where Cluster spacecraft in situ measurements are available. The European Space Agency Cluster mission is composed of four-spacecraft flying in a formation and this allows, for the first time, simultaneous four-point measurements at different scales, thanks to the changeable spacecraft separation. In this thesis Cluster observations of magnetic reconnection in Geospace are presented both at large and at small scales.
At large temporal (a few hours) and spatial (several thousands km) scales, both fluid and kinetic evidence of reconnection is provided. The evidence consist of ions accelerated and transmitted across the Earth’s magnetopause. The observations show that component reconnection occurs at the magnetopause and that reconnection is continuous in time.
The microphysics of reconnection is investigated at smaller temporal (a few ion gyroperiods) and spatial (a few ion gyroradii) scales. Two regions are important for the microphysics: the X-region, around the X-line, where reconnection is initiated and the separatrix region, away from the X-line, where most of the energy conversion occurs. Observations of a separatrix region at the magnetopause are shown and the microphysics is described in detail. The separatrix region is shown to be highly structured and dynamic even away from the X-line.
Finally the discovery of magnetic reconnection in turbulent plasma is presented by showing, for the first time, in situ evidence of reconnection in a thin current sheet found in the turbulent plasma downstream of the quasi-parallel Earth’s bow shock. It is shown that turbulent reconnection is fast and that electromagnetic energy is converted into heating and acceleration of particles in turbulent plasma. It is also shown that reconnecting current sheets are abundant in turbulent plasma and that reconnection can be an efficient energy dissipation mechanism.
Książki na temat "Magnetosphere system"
Chappell, Charles R., Robert W. Schunk, Peter M. Banks, James L. Burch i Richard M. Thorne, red. Magnetosphere-Ionosphere Coupling in the Solar System. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119066880.
Pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Modeling of the magnetosphere-ionosphere-atmosphere system. [Washington, DC: National Aeronautics and Space Administration, 1994.
Znajdź pełny tekst źródłaH, Waite J., Burch J. L. 1942-, Moore R. L. 1942-, AGU Books Board i Yosemite Conference on Outstanding Problems in Solar System Plasma Physics: Theory and Instrumentation (1988 : Yosemite National Park, Calif.), red. Solar system plasma physics. Washington, DC: American Geophysical Union, 1989.
Znajdź pełny tekst źródłaCravens, Thomas E. Physics of solar system plasmas. Cambridge: Cambridge University Press, 1997.
Znajdź pełny tekst źródłaKeiling, Andreas, Caitríona M. Jackman i Peter A. Delamere. Magnetotails in the solar system. Washington, D.C: American Geophysical Union, 2015.
Znajdź pełny tekst źródła1943-, Priest E. R., i Summer School on Solar System Plasmas (1984 : Imperial College), red. Solar system magnetic fields. Dordrecht, Holland: D. Reidel Pub. Co., 1985.
Znajdź pełny tekst źródła1942-, Burch J. L., i Waite J. H, red. Solar system plasmas in space and time. Washington, DC: American Geophysical Union, 1994.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Semi-annual report on NASA grant NAGW5-1097: MIAMI, modeling of the magnetosphere-ionosphere-atmosphere system, 1 November 1996 to 31 March 1997. [Washington, DC: National Aeronautics and Space Administration, 1997.
Znajdź pełny tekst źródła1943-, Priest E. R., i Hood Alan W, red. Advances in solar system magnetohydrodynamics. Cambridge [England]: Cambridge University Press, 1991.
Znajdź pełny tekst źródłaK, Biernat H., red. The solar wind-magnetosphere system 2: Proceedings of the international workshop held in Graz, September 27-29, 1995. Wien: Verlag der Österreichische Akademie der Wissenschaften, 1997.
Znajdź pełny tekst źródłaCzęści książek na temat "Magnetosphere system"
Bertotti, Bruno, i Paolo Farinella. "Magnetosphere". W Physics of the Earth and the Solar System, 177–203. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1916-7_9.
Pełny tekst źródłaDelamere, P. A. "Solar Wind Interaction with Giant Magnetospheres and Earth's Magnetosphere". W Magnetotails in the Solar System, 217–33. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118842324.ch13.
Pełny tekst źródłaWalker, Raymond J., i Keiichiro Fukazawa. "Simulation Studies of Magnetosphere and Ionosphere Coupling in Saturn's Magnetosphere". W Magnetosphere-Ionosphere Coupling in the Solar System, 335–44. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119066880.ch26.
Pełny tekst źródłaHoranyi, Mihaly. "Charged Dust in the Earth'S Magnetosphere". W Solar System Plasma Physics, 457–60. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm054p0457.
Pełny tekst źródłaWestlake, Joseph H., Thomas E. Cravens, Robert E. Johnson, Stephen A. Ledvina, Janet G. Luhmann, Donald G. Mitchell, Matthew S. Richard i in. "Titan's Interaction with Saturn's Magnetosphere". W Magnetosphere-Ionosphere Coupling in the Solar System, 291–305. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119066880.ch23.
Pełny tekst źródłaGallagher, D. L. "The inner magnetosphere imager mission". W Solar System Plasmas in Space and Time, 265–74. Washington, D. C.: American Geophysical Union, 1994. http://dx.doi.org/10.1029/gm084p0265.
Pełny tekst źródłaCheng, A. F., i S. M. Krimigis. "Energetic Neutral Particle Imaging of Saturn'S Magnetosphere". W Solar System Plasma Physics, 253–60. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm054p0253.
Pełny tekst źródłaBolton, Scott J., Fran Bagenal, Michel Blanc, Timothy Cassidy, Emmanuel Chané, Caitriona Jackman, Xianzhe Jia i in. "Jupiter’s Magnetosphere: Plasma Sources and Transport". W Plasma Sources of Solar System Magnetospheres, 209–36. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3544-4_6.
Pełny tekst źródłaBurch, James L. "Magnetosphere-Ionosphere Coupling, Past to Future". W Magnetosphere-Ionosphere Coupling in the Solar System, 1–17. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119066880.ch1.
Pełny tekst źródłaWalker, Raymond J., Tatsuki Ogino i Maha Ashour-Abdalla. "Simulating the Magnetosphere: The Structure of the Magnetotail". W Solar System Plasma Physics, 61–68. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm054p0061.
Pełny tekst źródłaStreszczenia konferencji na temat "Magnetosphere system"
Sharma, A. Surjalal, A. Sen, S. Sharma i P. N. Guzdar. "The Magnetosphere: A Complex Driven System". W INTERNATIONAL SYMPOSIUM ON WAVES, COHERENT STRUCTURES AND TURBULENCE IN PLASMAS. AIP, 2010. http://dx.doi.org/10.1063/1.3526148.
Pełny tekst źródłaV. Vorobev, Andrei, i Gulnara R. Shakirova. "Geoinformation System for Analytical Control and Forecast of the Earth’s Magnetosphere Parameters". W 2nd International Conference on Geographical Information Systems Theory, Applications and Management. SCITEPRESS - Science and and Technology Publications, 2016. http://dx.doi.org/10.5220/0005730201930200.
Pełny tekst źródłaNwankwo, Victor Uchenna J., William Denig, Muyiwa P. Ajakaiye, Wahabbi Akanni, Johnson Fatokun, Sandip K. Chakrabarti, Jean-Pierre Raulin, Emilia Correia i John E. Enoh. "Simulation of atmospheric drag effect on low Earth orbit satellites during intervals of perturbed and quiet geomagnetic conditions in the magnetosphere-ionosphere system". W 2020 International Conference in Mathematics, Computer Engineering and Computer Science (ICMCECS). IEEE, 2020. http://dx.doi.org/10.1109/icmcecs47690.2020.247003.
Pełny tekst źródłaD'Huys, Elke, Petra Vanlommel, Jan Janssens i Ronald Van der Linden. "Come fly with us: services provided by the Space Weather Education Centre". W Symposium on Space Educational Activities (SSAE). Universitat Politècnica de Catalunya, 2022. http://dx.doi.org/10.5821/conference-9788419184405.004.
Pełny tekst źródłaKrimigis, Stamatios M., Dimitris Vassiliadis, Shing F. Fung, Xi Shao, Ioannis A. Daglis i Joseph D. Huba. "Saturn’s magnetosphere: An example of dynamic planetary systems". W MODERN CHALLENGES IN NONLINEAR PLASMA PHYSICS: A Festschrift Honoring the Career of Dennis Papadopoulos. AIP, 2011. http://dx.doi.org/10.1063/1.3544327.
Pełny tekst źródłaMao, Yao-Ting, David Auslander, David Pankow i John Sample. "Estimating Angular Velocity, Attitude Orientation With Controller Design for Three Units CubeSat". W ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/dscc2014-5895.
Pełny tekst źródłaAtwell, Bill, Brandon Reddell, Bill Bartholet, John Nealy, Martha Clowdsley, Brooke Anderson, Thomas Miller i Lawrence W. Townsend. "Parametric Shielding Strategies for Jupiter Magnetospheric Missions". W International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-2834.
Pełny tekst źródłaSharma, A. Surjalal. "Complexity in nature and data-enabled science: The Earth's magnetosphere". W INTERNATIONAL CONFERENCE ON COMPLEX PROCESSES IN PLASMAS AND NONLINEAR DYNAMICAL SYSTEMS. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4865343.
Pełny tekst źródłaOgawa, Hiroyuki, Tsutomu Yamazaki, Akira Okamoto, Naoko Iwata i Shun Okazaki. "BepiColombo Mercury Magnetospheric Orbiter Flight Model Thermal Analysis". W 42nd International Conference on Environmental Systems. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-3578.
Pełny tekst źródłaSteffy, S. V., i S. S. Ghosh. "Interpretation of non-conventional coherent structures in magnetospheric plasma system". W 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC). IEEE, 2019. http://dx.doi.org/10.23919/ursiap-rasc.2019.8738136.
Pełny tekst źródłaRaporty organizacyjne na temat "Magnetosphere system"
Branduardi-Raymont, Graziella, i et al. SMILE Definition Study Report. ESA SCI, grudzień 2018. http://dx.doi.org/10.5270/esa.smile.definition_study_report-2018-12.
Pełny tekst źródłaForbes, Jeffrey M. Self-Consistent Modeling of the Ionosphere-Thermosphere-Magnetosphere System. Fort Belvoir, VA: Defense Technical Information Center, maj 1992. http://dx.doi.org/10.21236/ada253232.
Pełny tekst źródłaBARKHATOV, NIKOLAY, i SERGEY REVUNOV. A software-computational neural network tool for predicting the electromagnetic state of the polar magnetosphere, taking into account the process that simulates its slow loading by the kinetic energy of the solar wind. SIB-Expertise, grudzień 2021. http://dx.doi.org/10.12731/er0519.07122021.
Pełny tekst źródłaMeng, C. I., i P. T. Newell. Investigations of Magnetosphere-Ionosphere Coupling Relevant to Operational Systems. Fort Belvoir, VA: Defense Technical Information Center, luty 1988. http://dx.doi.org/10.21236/ada195972.
Pełny tekst źródłaHilmer, R. V. A Magnetospheric Neutral Sheet-Oriented Coordinate System for MSM and MSFM Applications. Fort Belvoir, VA: Defense Technical Information Center, lipiec 1997. http://dx.doi.org/10.21236/ada338067.
Pełny tekst źródła