Gotowa bibliografia na temat „Magnetic Nano Composite”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Magnetic Nano Composite”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Magnetic Nano Composite"
Zhao, Bin, Qilei Wang i Lin Jin. "Heat-resistant antiflaming and friction mechanisms in nano-Fe2O3-reinforced silicon rubber". Science and Engineering of Composite Materials 20, nr 4 (1.11.2013): 331–35. http://dx.doi.org/10.1515/secm-2013-0026.
Pełny tekst źródłaChen, C. P., T. H. Chang i T. F. Wang. "Synthesis of magnetic nano-composite particles". Ceramics International 28, nr 8 (styczeń 2002): 925–30. http://dx.doi.org/10.1016/s0272-8842(02)00075-5.
Pełny tekst źródłaSingh, Akanksha, Mandar Shirolkar, Mukta V. Limaye, Shubha Gokhale, Chantal Khan-Malek i Sulabha K. Kulkarni. "A magnetic nano-composite soft polymeric membrane". Microsystem Technologies 19, nr 3 (12.08.2012): 409–18. http://dx.doi.org/10.1007/s00542-012-1646-2.
Pełny tekst źródłaLi, Jian Ling, i Decai Li. "Research on Magnetization Mechanism of Nano-Magnetic Fluid". Defect and Diffusion Forum 295-296 (styczeń 2010): 19–26. http://dx.doi.org/10.4028/www.scientific.net/ddf.295-296.19.
Pełny tekst źródłaPanchal, Nital R., i Rajshree B. Jotania. "Enhancement of Magnetic Properties in Co-Sr Ferrite Nano Composites Prepared by an SHS Route". Solid State Phenomena 209 (listopad 2013): 164–68. http://dx.doi.org/10.4028/www.scientific.net/ssp.209.164.
Pełny tekst źródłaArumugam, Vasanthakumar, Gyanasivan G. Redhi i Robert M. Gengan. "Efficient Catalytic Activity of Ionic Liquid-Supported NiFe2O4 Magnetic Nanoparticle Doped Titanium Dioxide Nano-Composite". International Journal of Chemical Engineering and Applications 7, nr 6 (grudzień 2016): 422–27. http://dx.doi.org/10.18178/ijcea.2016.7.6.618.
Pełny tekst źródłaLiu, Maoyuan, i Lei Chen. "Research on Magnetic Property of Nd2Fe14B/α-Fe Nanocomposite Under Different Roller Speeds". Open Materials Science Journal 8, nr 1 (31.12.2014): 127–30. http://dx.doi.org/10.2174/1874088x01408010127.
Pełny tekst źródłaYan, Liang, Biao Yan i Lei Peng. "Microstructure and Magnetic Properties of Grain Boundary Insulated Fe/Mn0.5Zn0.5Fe2O4 Soft Magnetic Composites". Materials 15, nr 5 (2.03.2022): 1859. http://dx.doi.org/10.3390/ma15051859.
Pełny tekst źródłaBureš, R., M. Fáberová i P. Kurek. "Microstructure and Mechanical Properties of Fe/MgO Micro-Nano Composite for Electrotechnical Applications". Powder Metallurgy Progress 18, nr 2 (1.11.2018): 103–10. http://dx.doi.org/10.1515/pmp-2018-0011.
Pełny tekst źródła张, 建修. "Research on Magnetic-Optical Performance of Composite Magnetic Nano-Array Films". Optoelectronics 11, nr 01 (2021): 35–44. http://dx.doi.org/10.12677/oe.2021.111005.
Pełny tekst źródłaRozprawy doktorskie na temat "Magnetic Nano Composite"
Nyamsi, Francois T. "Carbon Nanotube and Soft Magnetic Lightweight Materials in Electric Machines". University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1535381574629281.
Pełny tekst źródłaBsawmaii, Laure. "Exaltation des différents effets magnéto-optiques à l’aide de réseaux résonants diélectriques basés sur un nano-composite magnétique obtenu par voie sol-gel". Thesis, Lyon, 2020. http://www.theses.fr/2020LYSES028.
Pełny tekst źródłaMagneto-optical (MO) photonic devices are currently highly desirable because of their ability to improve the sensitivity of biosensors or their sensitivity to the magnetic field. However, MO effects being rather small through classical magnetic films, it is relevant to find ways to enhance such effects which can manifest as light polarization rotation or intensity modification under magnetic field. The proposed device in this work to enhance MO effects is an all-dielectric planar structure formed by a 1D photoresist (PR) grating deposited on top of a MO film itself deposited on a glass substrate. Under coupling conditions through the grating, guided-modes (TE and TM) with narrow resonances are excited in the MO film by the incident light, increasing hence the light-matter interaction. Such coupling results as a dip (peak) in the transmittance (reflectance) spectrum. The MO film is a composite formed by magnetic nanoparticles (CoFe2 04) embedded in a silica matrix and obtained through sol-gel process. This nano-structurable composite can be easily deposited on common substrates with low annealing temperature (90°C), which is not the case of the most MO materials used within integrated optics platforms. Large enhancements of the different non-reciprocal polarization rotation effects (such as Faraday and longitudinal MO Kerr) were achieved experimentally and numerically through the all-dielectric resonant structure. The main results of this work concern the transverse MO Kerr effect (TMOKE). This effect induces a non-reciprocal spectral shift of the transmittance (reflectance) resonance upon magnetization reversal, resulting in an intensity modulation effect. TMOKE values up to 9.5% and 18.5% were measured respectively in transmission with T = 80% and in reflection with R = 5%. These large TMOKE values are mainly due to the high quality factor of TM transmittance (reflectance) resonances. The TMOKE signal for a single MO film is around 0.01%, hence an enhancement with three orders of magnitude was achieved through the fabricated structure. The reached measured TMOKE values are highly competitive with the literature where, to our knowledge, maximum values of 1.5% and 15% were experimentally demonstrated respectively through all-dielectric and magneto-plasmonic structures. Moreover, unexpected reciprocal magnetic effects were experimentally evidenced. Finally, the proposed all-dielectric structure is a low-cost device, which can be fabricated on large scale substrate, and able to enhance all the MO effects. Hence, it is a promising structure for non-destructive testing, magnetic field sensing and even biosensing
Cook, James. "Optical magnetism with metallic nano-composites". Thesis, University of Surrey, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616915.
Pełny tekst źródłaSilva, Gabriela Cordeiro da. "Development of nano-sized Mn3O4 magnetic composites: application in wastewater treatment". Universidade Federal de Minas Gerais, 2012. http://hdl.handle.net/1843/BUBD-93CFKJ.
Pełny tekst źródłaCompósitos com propriedades magnéticas foram sintetizados com sucesso por meio da deposição de óxido de manganês, Mn3O4, sobre partículas de magnetita. O óxido de manganês é obtido por precipitação usando O2 como oxidante. As partículas de magnetita nos compósitos (~40m2.g-1) formam aglomerados com as partículas de Mn3O4. A separação sólido-líquido é possível, por meio da aplicação de um campo magnético. A aplicação do compósito magnético na adsorção oxidativa de As(III) foi avaliada. Os ajustes das isotermas de sorção retornam valores de b>1 para a constante de Langmuir, demonstrando elevada afinidade dos compósitos por As(III), o que é desejado na remoção de contaminantes traços e sub-traços. A capacidade de adsorção máxima é 14mgAs.g-1 sólido (0,0048mmolAs.m-2 sólido). Durante o processo de adsorção e oxidação, o ferro não é liberado e parte do Mn2+ liberado para a solução, é adsorvido ou precipitado, ou ambos, o que implica em poucos contaminantes liberados e portanto, uma solução mais limpa. O espectro XANES dos compósitos carregados com As mostram que o arsênio adsorvido está na formaoxidada, As(V), demonstrando que o As(III) é oxidado com sucesso pelo Mn3O4. Dados espectrais de Raman e infravermelho das amostras carregadas com As (5,0 a 16mg.g-1) sugerem a presença de bandas As-O referindo-se à formação de complexos monodentados e bidentados, elucidando a adsorção de arsênio na superfície do compósito. O compósito magnético de Mn3O4 foi também aplicadopara oxidar e remover azul de metileno (MB) de soluções aquosas. Resultados de UV-vis mostram que o compósito de Mn3O4 é capaz de oxidar MB formando seus derivados parcial e totalmente desmetilados. A descoloração de 85% é alcançado em 60min, em pH 3. Para pH>3, a oxidação não ocorre, e apenas 50% do MB é adsorvido. Dessorção por metanol dos compostos orgânicos adsorvidos no compósito mostra que o derivado de MB totalmente desmetilado, a tionina, é o único composto adsorvido. Portanto, o presente trabalho simplifica a síntese de umcompósito magnético de óxido de manganês para ser aplicado em sistemas ambientais, tanto como oxidante, quanto como adsorvente. Além disso, o trabalho acrescenta conhecimento sobre o modo das interações de As com Mn3O4 usando técnicas espectroscópicas vibracionais.
Nong, Thi Thanh Huyen. "Electric control of magnetic behavior in artificial multiferroic composites". Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCD070.
Pełny tekst źródłaMultiferroic materials present several ferroic orders, i.e. ferromagnetic, ferroelectric and/or ferroelastic. The coupling between these ferroic orders allow the control of the magnetic properties by applying an electric field and vice versa. In order to use their multifunctionality in new applications, this coupling must be efficient at room temperature. This thesis concentrates on materials artificially coupling together a ferromagnetic/ magnetostrictive phase with a ferroelectric/piezoelectric one. The coupling between these two phases is called magnetoelectric (ME). The first chapter describes the state of the art of this ME coupling for different multiferroic composite structures. Characterization techniques and micromagnetic simulation tools are presented in the second chapter. In the third chapter, a hetero-structure given by a magnetostrictive film/flexible substrate/piezoelectric actuator (FeCuNbSiB/Kapton/PE) is studied. The magnetic domains of FeCuNbSiB as well as their orientation are controlled by applying an electric field and studied by local microscopy (MFM). The fourth chapter focuses on a nanocomposite material including magnetostrictive nanoparticles in a flexible piezoelectric matrix (PVDF polymer). The effect of these inclusions (nanoparticles) on the local piezoelectric response of the PVDF is studied by piezoeponse microscopy (PFM). Symmetrically, the influence of the piezoelectric matrix on the static magnetic properties of the nanoparticles is analyzed. In the last chapter, the optimization of the magnetic properties of a set of anisotropic nanoparticles (cobalt nanowires) is studied as fonction of their structure, shape and mutual interactions. This experimental study is corroborated by simulations and targets new composites ME materials including the anisotropic nanoparticles in a flexible piezoelectric matrix
Biehl, Philip [Verfasser], Felix [Gutachter] Schacher i Thomas [Gutachter] Heinze. "Tailoring the Interface of Magnetic Nano-Composites / Philip Biehl ; Gutachter: Felix Schacher, Thomas Heinze". Jena : Friedrich-Schiller-Universität Jena, 2020. http://d-nb.info/121957404X/34.
Pełny tekst źródłaKryklia, S. O., Yu M. Samchenko, N. O. Pasmurtseva, V. V. Konovalova i S. M. Scherbakov. "Nano-Sized Hydrogel Composites Based on N-Isopropylacrylamide and Magnetite for Controlled Drug Delivery". Thesis, Sumy State University, 2015. http://essuir.sumdu.edu.ua/handle/123456789/42510.
Pełny tekst źródłaLi, Wai Chung. "Preparation and characterization of noble metal-magnetite hybrid nano/micro composites towards drug delivery and heterogeneous catalysis". HKBU Institutional Repository, 2019. https://repository.hkbu.edu.hk/etd_oa/668.
Pełny tekst źródłaJouni, Mohammad. "Nouvelles architectures de nano-systèmes polymères conducteurs à base de mélanges de nanocharges conductrices". Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0148/document.
Pełny tekst źródłaConductive polymer nanocomposites have been the object of intense researches and investigations recently. In fact, these materials have shown a great potential to be useful for many applications including different sectors. However, despite the promising results reported at the moment in this area, there is still a lack in the performance which can be improved by synchronization of their properties. In this PhD work, we present the preparation and full characterization of conductive polymer nanocomposites. Two kinds of conductive nanofillers (carbon nanotubes (MWCNTs) and silver nanoparticles (Ag-NPs)) have been dispersed either in a thermoplastic polymer (polyethylene PE), or in a thermoset matrix (epoxy amine). The conductive polymer nanocomposites obtained exhibit good electrical and/or thermal properties with conserving the mechanical properties ensured by low fillers fraction. The study was not only based on experimental characterizations but also on modulation to analyze the charge carrier transport at very low temperature in these systems to provide successful understanding to some basic properties which are still actually not fully investigated. Electrical properties are in good agreement with thermal properties. Electromagnetic shielding of our PE based nanocomposites have been studied by Nuclear Magnetic Resonance (NMR)
Wang, Sih Han, i 王思涵. "Magnetic Behavior Analysis of Magnetic Composite Nano/Micro Structure". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/09708299442991158342.
Pełny tekst źródłaCzęści książek na temat "Magnetic Nano Composite"
Younes, Abderrahmane, Nacer Eddine Bacha, Mourad Zergoug, Mokrane Gousmine, Heider Dehdouh i Amirouche Bouamer. "Effect of Grain Size of Nano Composite on Raman and Magnetic Proprieties". W Lecture Notes in Mechanical Engineering, 425–33. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41468-3_35.
Pełny tekst źródłaFerreira, L.-M. P., E. Bayraktar, I. Miskioglu i M.-H. Robert. "Design of Magnetic Aluminium (AA356) Composites (AMCs) Reinforced with Nano Fe3O4, and Recycled Nickel: Copper Particles". W Mechanics of Composite, Hybrid and Multifunctional Materials, Volume 5, 93–100. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95510-0_12.
Pełny tekst źródłaFerreira, L. M. P., E. Bayraktar, M. H. Robert i I. Miskioglu. "Optimization of Magnetic and Electrical Properties of New Aluminium Matrix Composite Reinforced with Magnetic Nano Iron Oxide (Fe3O4)". W Conference Proceedings of the Society for Experimental Mechanics Series, 11–18. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21762-8_2.
Pełny tekst źródłaSaito, Sho, Yoshio Sakka, Tohru S. Suzuki i Takeshi Nakata. "Preparation and Properties of Al2O3-Mullite-SiC Nano-Composite by Slip Casting in a High Magnetic Field and Reaction Sintering". W Key Engineering Materials, 1133–36. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-410-3.1133.
Pełny tekst źródłaSaxena, Reena, Amit Lochab i Megha Saxena. "Magnetite Carbon Nanomaterials for Environmental Remediation". W Environmental Remediation Through Carbon Based Nano Composites, 85–122. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6699-8_5.
Pełny tekst źródłaWu, Jia, Qiao Ling Hu, Fu Ping Chen, Bao Qiang Li i Jia Cong Shen. "Study of The Mechanical Property of Magnetite/ Hydroxyapatite/ Chitosan Nano-Composite". W Key Engineering Materials, 435–38. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-422-7.435.
Pełny tekst źródłaKolev, Svetoslav, i Tatyana Koutzarova. "Microwave Characteristics (Reflection Losses) of Composite Materials Consisting of Magnetic Nanoparticles". W NATO Science for Peace and Security Series B: Physics and Biophysics, 251–57. Dordrecht: Springer Netherlands, 2020. http://dx.doi.org/10.1007/978-94-024-2018-0_20.
Pełny tekst źródłaKijima-Aoki, Hanae. "High-Frequency Soft Magnetic Properties of Nano-Granular Cobalt-(Metal-Oxide, Metal-Nitride) Thin Films with Perpendicular Magnetic Anisotropy". W Surfaces and Interfaces of Metal Oxide Thin Films, Multilayers, Nanoparticles and Nano-composites, 247–63. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74073-3_12.
Pełny tekst źródłaGutiérrez, Lucía, María del Puerto Morales i Alejandro G. Roca. "Synthesis and Applications of Anisotropic Magnetic Iron Oxide Nanoparticles". W Surfaces and Interfaces of Metal Oxide Thin Films, Multilayers, Nanoparticles and Nano-composites, 65–89. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74073-3_3.
Pełny tekst źródłaTovstolytkin, Alexandr, Anatolii Belous, Yaryna Lytvynenko, Yuliia Shlapa, Serhii Solopan i Larissa Bubnovskaya. "Nanoscale Heat Mediators for Magnetic Hyperthermia: Materials, Problems, and Prospects". W Surfaces and Interfaces of Metal Oxide Thin Films, Multilayers, Nanoparticles and Nano-composites, 25–64. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74073-3_2.
Pełny tekst źródłaStreszczenia konferencji na temat "Magnetic Nano Composite"
Saxena, Ayush, i S. S. Godara. "Magnetic nano composite materials: A review". W 1ST INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING AND NANOTECHNOLOGY (ICAMEN 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5123944.
Pełny tekst źródłaJha, Amit Kumar, Meng Li, Ewan S. Douglas, Erin R. Maier, Fiorenzo G. Omenetto i Corey Fucetola. "Modeling light-controlled actuation of flexible magnetic composite structures using the finite element method (FEM)". W Molecular and Nano Machines III, redaktorzy Zouheir Sekkat i Takashige Omatsu. SPIE, 2020. http://dx.doi.org/10.1117/12.2568919.
Pełny tekst źródłaTakeuchi, Mitsuaki, Yoshihito Matsumura, Hirohisa Uchida, Masakazu Fujita i Toshiro Kuji. "Characterization of giant magnetostrictive composite materials prepared under magnetic field". W SPIE's International Symposium on Smart Materials, Nano-, and Micro- Smart Systems, redaktor Alan R. Wilson. SPIE, 2002. http://dx.doi.org/10.1117/12.469174.
Pełny tekst źródłaRahbar, Mona, i Bonnie L. Gray. "Maximizing deflection in MEMS and microfluidic actuators fabricated in permanently magnetic composite polymers". W 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2017. http://dx.doi.org/10.1109/nano.2017.8117294.
Pełny tekst źródłaAtaie, A., H. R. Emamian, A. Honarbakhsh-raouf, Mohamad Rusop i Tetsuo Soga. "Synthesis of BaFe[sub 12]O[sub 19]∕MCM-41 Magnetic Nano-Composite". W NANOSCIENCE AND NANOTECHNOLOGY: International Conference on Nanoscience and Nanotechnology—2008. AIP, 2009. http://dx.doi.org/10.1063/1.3160189.
Pełny tekst źródłaPan, Yayue, i Lu Lu. "Additive Manufacturing of Magnetic Field-Responsive Smart Polymer Composites". W ASME 2016 11th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/msec2016-8865.
Pełny tekst źródłaWu, Jia-Han, Yu-Dong Ma, Yi-Da Chung i Gwo-Bin Lee. "An integrated microfluidic system for dual aptamer assay utilizing magnetic-composite-membranes". W 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE, 2017. http://dx.doi.org/10.1109/nems.2017.8017060.
Pełny tekst źródłaMakarov, Alexander, Viktor Sverdlov i Siegfried Selberherr. "Composite magnetic tunnel junctions for fast memory devices and efficient spin-torque nano-oscillators". W International Conference on Information Engineering. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/icie130451.
Pełny tekst źródłaGray, Bonnie L., Mona Rahbar, Avin Babataheri i Abdul I. Barakat. "Microinstrument for optical monitoring of endothelial cell migration under controlled tension/compression via integrated magnetic composite polymer actuation". W 2014 IEEE 14th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2014. http://dx.doi.org/10.1109/nano.2014.6968129.
Pełny tekst źródłaYang, Xin, Ning Gan, Nai-xing Luo, Dong-hua Xie i Wei-gang Wen. "A Disposable and Magnetic Nano-Particles Composite Membrane Modified Amperometric Immunosensor for Determination of Chloramphenicol". W 2009 2nd International Conference on Biomedical Engineering and Informatics. IEEE, 2009. http://dx.doi.org/10.1109/bmei.2009.5304881.
Pełny tekst źródła