Artykuły w czasopismach na temat „Magnetic field- Electrical discharge machining”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Magnetic field- Electrical discharge machining”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Walkar, Hemant, Vijaykumar S. Jatti i T. P. Singh. "Magnetic Field Assisted Electrical Discharge Machining of AISI 4140". Applied Mechanics and Materials 592-594 (lipiec 2014): 479–83. http://dx.doi.org/10.4028/www.scientific.net/amm.592-594.479.
Pełny tekst źródłaZhang, Zhen, Yi Zhang, Wuyi Ming, Yanming Zhang, Chen Cao i Guojun Zhang. "A review on magnetic field assisted electrical discharge machining". Journal of Manufacturing Processes 64 (kwiecień 2021): 694–722. http://dx.doi.org/10.1016/j.jmapro.2021.01.054.
Pełny tekst źródłaCheng, Chih-Ping, Kun-Ling Wu, Chao-Chuang Mai, Yu-Shan Hsu i Biing-Hwa Yan. "Magnetic field-assisted electrochemical discharge machining". Journal of Micromechanics and Microengineering 20, nr 7 (7.06.2010): 075019. http://dx.doi.org/10.1088/0960-1317/20/7/075019.
Pełny tekst źródłaRouniyar, Arun Kumar, i Pragya Shandilya. "Fabrication and experimental investigation of magnetic field assisted powder mixed electrical discharge machining on machining of aluminum 6061 alloy". Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 233, nr 12 (26.03.2019): 2283–91. http://dx.doi.org/10.1177/0954405419838954.
Pełny tekst źródłaYu, Po Huai, Jung Chou Hung, Hsin Min Lee, Kun Ling Wu i Biing Hwa Yan. "Machining Characteristics of Magnetic Force-Assisted Electrolytic Machining for Polycrystalline Silicon". Advanced Materials Research 325 (sierpień 2011): 523–29. http://dx.doi.org/10.4028/www.scientific.net/amr.325.523.
Pełny tekst źródłaYeo, S. H., M. Murali i H. T. Cheah. "Magnetic field assisted micro electro-discharge machining". Journal of Micromechanics and Microengineering 14, nr 11 (11.08.2004): 1526–29. http://dx.doi.org/10.1088/0960-1317/14/11/013.
Pełny tekst źródłaJadhav, Rahul R., Vijaykumar S. Jatti i T. P. Singh. "Magnetic Field Assisted Electric Discharge Machining of Cryo-Treated Monel 400 Alloy". Applied Mechanics and Materials 787 (sierpień 2015): 371–75. http://dx.doi.org/10.4028/www.scientific.net/amm.787.371.
Pełny tekst źródłaTakezawa, Hideki, Nobuhiro Yokote i Naotake Mohri. "External Magnetic Field Control during EDM of a Permanent Magnet". Advanced Materials Research 1017 (wrzesień 2014): 806–11. http://dx.doi.org/10.4028/www.scientific.net/amr.1017.806.
Pełny tekst źródłaAblyaz, Timur Rizovich, Preetkanwal Singh Bains, Sarabjeet Singh Sidhu, Karim Ravilevich Muratov i Evgeny Sergeevich Shlykov. "Impact of Magnetic Field Environment on the EDM Performance of Al-SiC Metal Matrix Composite". Micromachines 12, nr 5 (21.04.2021): 469. http://dx.doi.org/10.3390/mi12050469.
Pełny tekst źródłaTeimouri, Reza, i Hamid Baseri. "Study of Tool Wear and Overcut in EDM Process with Rotary Tool and Magnetic Field". Advances in Tribology 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/895918.
Pełny tekst źródłaGupta, Abhishek, i Suhas S. Joshi. "Modelling effect of magnetic field on material removal in dry electrical discharge machining". Plasma Science and Technology 19, nr 2 (19.01.2017): 025505. http://dx.doi.org/10.1088/2058-6272/19/2/025505.
Pełny tekst źródłaBeravala, Hardik, i Pulak M. Pandey. "Modelling of material removal rate in the magnetic field and air-assisted electrical discharge machining". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234, nr 7 (3.12.2019): 1286–97. http://dx.doi.org/10.1177/0954406219892297.
Pełny tekst źródłaChinke, Sandeep, Vijaykumar S. Jatti i T. P. Singh. "Electric Discharge Machining of Cryo-Treated BeCu Alloys". Applied Mechanics and Materials 787 (sierpień 2015): 386–90. http://dx.doi.org/10.4028/www.scientific.net/amm.787.386.
Pełny tekst źródłaKamide, Yukichi. "Electro discharge machining by steel tool electrode in a magnetic field." IEEJ Transactions on Industry Applications 109, nr 12 (1989): 889–96. http://dx.doi.org/10.1541/ieejias.109.889.
Pełny tekst źródłaKovbasyuk, A. A., i M. Yu Sarilov. "IMPROVING THE EFFICIENCY OF ELECTRICAL DISCHARGE MACHINING DUE TO IMPOSITION OF EXTERNAL MAGNETIC FIELD". Scholarly Notes of Komsomolsk-na-Amure State Technical University 1, nr 11 (30.09.2012): 62–65. http://dx.doi.org/10.17084/2012.iii-1(11).10.
Pełny tekst źródłaGholipoor, Ahad, Hamid Baseri, Mohsen Shakeri i Mohammadreza Shabgard. "Investigation of the effects of magnetic field on near-dry electrical discharge machining performance". Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 230, nr 4 (16.12.2014): 744–51. http://dx.doi.org/10.1177/0954405414558737.
Pełny tekst źródłaShabgard, Mohammad Reza, Ahad Gholipoor i Mousa Mohammadpourfard. "Investigating the effects of external magnetic field on machining characteristics of electrical discharge machining process, numerically and experimentally". International Journal of Advanced Manufacturing Technology 102, nr 1-4 (19.12.2018): 55–65. http://dx.doi.org/10.1007/s00170-018-3167-3.
Pełny tekst źródłaKumar, Anish, i Renu Sharma. "Multi-response optimization of magnetic field assisted EDM through desirability function using response surface methodology". Journal of the Mechanical Behavior of Materials 29, nr 1 (13.04.2020): 19–35. http://dx.doi.org/10.1515/jmbm-2020-0003.
Pełny tekst źródłaChen, Zhi, i Guojun Zhang. "Study on magnetic field distribution and electro-magnetic deformation in wire electrical discharge machining sharp corner workpiece". International Journal of Advanced Manufacturing Technology 98, nr 5-8 (27.06.2018): 1913–23. http://dx.doi.org/10.1007/s00170-018-2260-y.
Pełny tekst źródłaFeng, C. C., L. Li, C. S. Zhang, G. M. Zheng, X. Bai i Z. W. Niu. "Surface Characteristics and Hydrophobicity of Ni-Ti Alloy through Magnetic Mixed Electrical Discharge Machining". Materials 12, nr 3 (26.01.2019): 388. http://dx.doi.org/10.3390/ma12030388.
Pełny tekst źródłaOk, Jong Girl, Bo Hyun Kim, Do Kwan Chung, Woo Yong Sung, Seung Min Lee, Se Won Lee, Wal Jun Kim, Jin Woo Park, Chong Nam Chu i Yong Hyup Kim. "Electrical discharge machining of carbon nanomaterials in air: machining characteristics and the advanced field emission applications". Journal of Micromechanics and Microengineering 18, nr 2 (21.12.2007): 025007. http://dx.doi.org/10.1088/0960-1317/18/2/025007.
Pełny tekst źródłaChattopadhyay, K. D., P. S. Satsangi, S. Verma i P. C. Sharma. "Analysis of rotary electrical discharge machining characteristics in reversal magnetic field for copper-en8 steel system". International Journal of Advanced Manufacturing Technology 38, nr 9-10 (14.08.2007): 925–37. http://dx.doi.org/10.1007/s00170-007-1149-y.
Pełny tekst źródłaZabihi, Seyed Sina, Shahram Etemadi Haghighi, Hamid Soleimanimehr i Adel Maghsoudpour. "Effects of auxiliary magnetic field strength and direction on material removal rate and surface roughness in magnetic field-assisted electrical discharge machining". CIRP Journal of Manufacturing Science and Technology 41 (kwiecień 2023): 446–52. http://dx.doi.org/10.1016/j.cirpj.2023.01.008.
Pełny tekst źródłaSavita V. Jatti et al.,, Savita V. Jatti et al ,. "A Machinability Evaluation of Cryogenically Treated Beryllium Copper in a Magnetic Field Assisted by Electrical Discharge Machining". International Journal of Mechanical and Production Engineering Research and Development 8, nr 5 (2018): 77–84. http://dx.doi.org/10.24247/ijmperdoct201810.
Pełny tekst źródłaMing, Wuyi, Zhen Zhang, Shengyong Wang, Yanming Zhang, Fan Shen i Guojun Zhang. "Comparative study of energy efficiency and environmental impact in magnetic field assisted and conventional electrical discharge machining". Journal of Cleaner Production 214 (marzec 2019): 12–28. http://dx.doi.org/10.1016/j.jclepro.2018.12.231.
Pełny tekst źródłaRouniyar, Arun Kumar, i Pragya Shandilya. "Experimental Study on Material Removal Rate of Al6061 Machined with Magnetic Field Assisted Powder Mixed Electrical Discharge Machining". Journal of Physics: Conference Series 1240 (lipiec 2019): 012018. http://dx.doi.org/10.1088/1742-6596/1240/1/012018.
Pełny tekst źródłaPark, Juhyeon, Hoyong Lee, Gyejo Jung i Jinyi Lee. "Nondestructive testing of turbine disk roots using solid-state GMR sensor arrays and an axial directional scanning system". International Journal of Applied Electromagnetics and Mechanics 64, nr 1-4 (10.12.2020): 525–31. http://dx.doi.org/10.3233/jae-209360.
Pełny tekst źródłaBeravala, Hardik, i Pulak M. Pandey. "Characterization of Debris Formed in Magnetic Field-Assisted EDM Using Two-Phase Dielectric Fluid". Journal of Advanced Manufacturing Systems 19, nr 04 (grudzień 2020): 629–40. http://dx.doi.org/10.1142/s0219686720500353.
Pełny tekst źródłaUpadhyay, Lokesh, M. L. Aggarwal i Pulak M. Pandey. "Experimental investigations into rotary magnetic field and tool assisted electric discharge machining using magneto rheological fluid as dielectric". International Journal of Mechatronics and Manufacturing Systems 12, nr 1 (2019): 1. http://dx.doi.org/10.1504/ijmms.2019.097842.
Pełny tekst źródłaUpadhyay, Lokesh, M. L. Aggarwal i Pulak M. Pandey. "Experimental investigations into rotary magnetic field and tool assisted electric discharge machining using magneto rheological fluid as dielectric". International Journal of Mechatronics and Manufacturing Systems 12, nr 1 (2019): 1. http://dx.doi.org/10.1504/ijmms.2019.10019107.
Pełny tekst źródłaLuan, Boran, Xiaoyou Zhang, Fangchao Xu, Guang Yang, Junjie Jin, Chengcheng Xu, Feng Sun i Koichi Oka. "High Precision Magnetic Levitation Actuator for Micro-EDM". Actuators 11, nr 12 (2.12.2022): 361. http://dx.doi.org/10.3390/act11120361.
Pełny tekst źródłaRouniyar, Arun Kumar, i Pragya Shandilya. "Experimental Investigation on Recast Layer and Surface Roughness on Aluminum 6061 Alloy During Magnetic Field Assisted Powder Mixed Electrical Discharge Machining". Journal of Materials Engineering and Performance 29, nr 12 (6.11.2020): 7981–92. http://dx.doi.org/10.1007/s11665-020-05244-4.
Pełny tekst źródłaHourdequin, Hélène, Lionel Laudebat, Marie-Laure Locatelli, Zarel Valdez-Nava i Pierre Bidan. "Metallized ceramic substrate with mesa structure for voltage ramp-up of power modules". European Physical Journal Applied Physics 87, nr 2 (sierpień 2019): 20903. http://dx.doi.org/10.1051/epjap/2019180288.
Pełny tekst źródłaChaudhari, Rakesh, Jay J. Vora, Vivek Patel, L. N. López de Lacalle i D. M. Parikh. "Effect of WEDM Process Parameters on Surface Morphology of Nitinol Shape Memory Alloy". Materials 13, nr 21 (3.11.2020): 4943. http://dx.doi.org/10.3390/ma13214943.
Pełny tekst źródłaSingh, Rahul Kumar, Mayank Tiwari, Anpeksh Ambreesh Saksena i Aman Srivastava. "Analysis of a Compact Squeeze Film Damper with Magneto Rheological Fluid". Defence Science Journal 70, nr 2 (9.03.2020): 122–30. http://dx.doi.org/10.14429/dsj.70.12788.
Pełny tekst źródłaTuschl, Christoph, Beate Oswald-Tranta i Sven Eck. "Inductive Thermography as Non-Destructive Testing for Railway Rails". Applied Sciences 11, nr 3 (22.01.2021): 1003. http://dx.doi.org/10.3390/app11031003.
Pełny tekst źródłaZhao, Chenhao, Ningsong Qu i Xiaochuan Tang. "Confined Electrochemical Finishing of Additive-Manufactured Internal Holes with Coaxial Electrolyte Flushing". Journal of The Electrochemical Society 168, nr 11 (1.11.2021): 113504. http://dx.doi.org/10.1149/1945-7111/ac3782.
Pełny tekst źródłaYaou, Zhang, Han Ning, Kang Xiaoming, Zhao Wansheng i Xu Kaixian. "Experimental study of an electrostatic field–induced electrolyte jet electrical discharge machining process". Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 231, nr 10 (24.10.2015): 1752–59. http://dx.doi.org/10.1177/0954405415612327.
Pełny tekst źródłaTakezawa, Hideki, Yoshihiro Ichimura, Tatsuya Suzuki, Tamao Muramatsu i Naotake Mohri. "Relationship between Thermal Influence and Magnetic Characteristics in Electrical Discharge Machining of Magnetic Materials". Key Engineering Materials 516 (czerwiec 2012): 575–79. http://dx.doi.org/10.4028/www.scientific.net/kem.516.575.
Pełny tekst źródłaZhang, Xiao You, Akio Kifuji i Dong Jue He. "A Magnetic Drive Actuator for Micro Electrical Discharge Machining". Advanced Materials Research 591-593 (listopad 2012): 303–6. http://dx.doi.org/10.4028/www.scientific.net/amr.591-593.303.
Pełny tekst źródłaFarkas, Balázs Zsolt, i Márton Takács. "3D Milling by Micro Electrical Discharge Machining". Materials Science Forum 659 (wrzesień 2010): 467–70. http://dx.doi.org/10.4028/www.scientific.net/msf.659.467.
Pełny tekst źródłaSchneider, Sebastian, Tim Herrig, Andreas Klink i Thomas Bergs. "Modeling of the temperature field induced during electrical discharge machining". CIRP Journal of Manufacturing Science and Technology 38 (sierpień 2022): 650–59. http://dx.doi.org/10.1016/j.cirpj.2022.05.012.
Pełny tekst źródłaKim, B. H., J. G. Ok, Y. H. Kim i C. N. Chu. "Electrical Discharge Machining of Carbon Nanofiber for Uniform Field Emission". CIRP Annals 56, nr 1 (2007): 233–36. http://dx.doi.org/10.1016/j.cirp.2007.05.055.
Pełny tekst źródłaCao, Ming Rang, Yan Qing Wang, Sheng Qiang Yang i Weng Hui Li. "Experimental and Mechanism Research on EDM Combined with Magnetic Field". Key Engineering Materials 416 (wrzesień 2009): 337–41. http://dx.doi.org/10.4028/www.scientific.net/kem.416.337.
Pełny tekst źródłaBhatt, Geeta, Ajay Batish i Anirban Bhattacharya. "Experimental Investigation of Magnetic Field Assisted Powder Mixed Electric Discharge Machining". Particulate Science and Technology 33, nr 3 (29.09.2014): 246–56. http://dx.doi.org/10.1080/02726351.2014.968303.
Pełny tekst źródłaXIE, B. C., J. G. LIU i H. X. CUI. "INVESTIGATION OF DEBRIS PARTICLES DISTRIBUTION IN ELECTRICAL DISCHARGE MACHINING OF MICRO-HOLES ARRAY". Digest Journal of Nanomaterials and Biostructures 15, nr 1 (styczeń 2020): 15–23. http://dx.doi.org/10.15251/djnb.2020.151.15.
Pełny tekst źródłaSchimmelpfennig, Tassilo Maria, Ivan Perfilov, Jan Streckenbach i Eckart Uhlmann. "Comparison of Conventional and Dry Electrical Discharge Machining". Applied Mechanics and Materials 794 (październik 2015): 278–84. http://dx.doi.org/10.4028/www.scientific.net/amm.794.278.
Pełny tekst źródłaSchulze, Hans Peter. "Applications of the Electro-Contact-Discharge Machining (ECoDM) and the Analysis of Different Process Parts". Key Engineering Materials 504-506 (luty 2012): 1195–200. http://dx.doi.org/10.4028/www.scientific.net/kem.504-506.1195.
Pełny tekst źródłaPark, Jin Woo, Do Kwan Chung, Bo Hyun Kim, Jong Girl Ok, Wal Jun Kim, Yong Hyup Kim i Chong Nam Chu. "Wire electrical discharge machining of carbon nanofiber mats for field emission". International Journal of Precision Engineering and Manufacturing 13, nr 4 (kwiecień 2012): 593–99. http://dx.doi.org/10.1007/s12541-012-0076-5.
Pełny tekst źródłaKIFUJI, Akio, Xiaoyou ZHANG i Dongjue HE. "A08 A Long Stroke Magnetic Drive Actuator for Electrical Discharge Machining". Proceedings of The Manufacturing & Machine Tool Conference 2012.9 (2012): 27–28. http://dx.doi.org/10.1299/jsmemmt.2012.9.27.
Pełny tekst źródła